首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid pl258 carries the cadA gene that confers resistance to cadmium, lead, and zinc. CadA catalyzes ATP-dependent cadmium efflux from cells of Staphylococcus aureus. It is a member of the superfamily of P-type ATPases and belongs to the subfamily of soft metal ion pumps. In this study the membrane topology of this P-type ATPase was determined by constructing fusions with the topological reporter genes phoA or lacZ. A series of 44 C-terminal truncated CadAs were fused with one or the other reporter gene, and the activity of each chimeric protein was determined. In addition, the location of the first transmembrane segment was determined by immunoblot analysis. The results are consistent with the pl258 CadA ATPase having eight transmembrane segments. The first 109 residues is a cytosolic domain that includes the Cys(X)2Cys motif that distinguishes soft metal ion-translocating P-type ATPases from their hard metal ion-translocating homologues. Another feature of soft metal ion P-type ATPases is the CysProCys motif, which is found in the sixth transmembrane segment of CadA. The phosphorylation site and ATP binding domain conserved in all P-type ATPases are situated within the large cytoplasmic loop between the sixth and seventh transmembrane segments.  相似文献   

2.
《Gene》1996,179(1):9-19
Bacterial plasmids encode resistance systems for toxic metal ions, including Ag+, AsO2-, AsO43-, Cd2+, Co2+, CrO42-, Cu2+ Hg2+, Ni2+, Pb2+, Sb3+, TeO32-, Tl+ and Zn2+. The function of most resistance systems is based on the energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The Cd2+-resistance ATPase of Gram-positive bacteria (CadA) is membrane cation pump homologous with other bacterial, animal and plant P-type ATPases. CadA has been labeled with 32P from [α-32p]ATP and drives ATP-dependent Cd2+ (and Zn2+) uptake by inside-out membrane vesicles (equivalent to efflux from whole cells). Recently, isolated genes defective in the human hereditary diseases of copper metabolism, namely Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to bacterial CadA than to other ATPases from eukaryotes. The arsenic resistance efflux system transports arsenite [As(III)], alternatively using either a double-polypeptide (ArsA and ArsB) ATPase or a single-polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. The triple-polypeptide Czc (Cd2+, Zn2+ and Co2+) chemiosmotic efflux pump consists of inner membrane (CzcA), outer membrane (CzcC) and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell.  相似文献   

3.
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca2+-transporting ATPases; cluster 2: Na+- and gastric H+-ATPases; cluster 3: plasma membrane H+-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg2+-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques. Correspondence to: M.H. Saier, Jr.  相似文献   

4.
P-type ATPases as drug targets: Tools for medicine and science   总被引:1,自引:0,他引:1  
P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.  相似文献   

5.
Potassium or Na+ efflux ATPases, ENA ATPases, are present in all fungi and play a central role in Na+ efflux and Na+ tolerance. Flowering plants lack ENA ATPases but two ENA ATPases have been identified in the moss Physcomitrella patens, PpENA1 and PpENA2. PpENA1 mediates Na+ efflux in Saccharomyces cerevisiae. To propose a general function of ENA ATPases in bryophytes it was necessary to demonstrate that these ATPases mediate Na+ efflux in planta and that they exist in more bryophytes than P. patens. For these demonstrations (1) we cloned a third ATPase from P. patens, PpENA3, and studied the expression pattern of the three PpENA genes; (2) we constructed and studied the single and double Δppena1 and Δppena2 mutants; and (3) we cloned two ENA ATPases from the liverwort Marchantia polymorpha, MpENA1 and MpENA2, and expressed them in S. cerevisiae. The results from the first two approaches revealed that the expression of ENA ATPases was greatly enhanced at high pH and that Na+ efflux at high pH depended on PpENA1. The ENA1 ATPase of M. polymorpha suppressed the defective growth of a S. cerevisiae mutant at high K+ or Na+ concentrations, especially at high K+.  相似文献   

6.
Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4 +, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, PO4 3-, SO4 2- and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+ AsO2 -, AsO4 3-, Cd2+, Co2+, CrO4 2−, Cu2+, Hg2+, Ni2+, Pb2+, TeO3 2−, TI+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd2+-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [γ-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson’s disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. Received 08 August 1997/ Accepted in revised form 01 November 1997  相似文献   

7.
We have investigated the presence of K+-transporting ATPases that belong to the phylogenetic group of animal Na+,K+-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H+- and Na+,K+-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.  相似文献   

8.
The plasmid-determined arsenite and antimonite efflux ATPase of bacteria differs from other membrane transport ATPases, which are classified into several families (such as the F0F1-type H+-translocating ATP synthases, the related vacuolar H+-translocating ATPases, the P-type cation-translocating ATPases, and the superfamily which includes the periplasmic binding-protein-dependent systems in Gram-negative bacteria, the human multidrug resistance P-glycoprotein, and the cystic fibrosis transport regulator). The amino acid sequences of the components of the arsenic resistance system are not similar to known ATPase proteins. New findings with the arsenic resistance operons of bacterial plasmids suggest that instead of being an orphan the Ars system will now be the first recognized member of a new class of ATPases. Furthermore, fundamental questions of energy-coupling (ATP-driven or chemiosmotic) have recently been raised and the finding that the arsC gene product is a soluble enzyme that reduces arsenate to arsenite changes the previous picture of the functioning of this widespread bacterial system.  相似文献   

9.
Members of the P4 subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport mechanism that appears to be conserved throughout the family. A challenging problem is to understand how this mechanism is adapted in P4 ATPases to flip phospholipids. P4 ATPases form oligomeric complexes with members of the CDC50 protein family. While formation of these complexes is required for P4 ATPase export from the endoplasmic reticulum, little is known about the functional role of the CDC50 subunits. The Na+/K+-ATPase and closely-related H+/K+-ATPase are the only other P-type pumps that are oligomeric, comprising mandatory β-subunits that are strikingly reminiscent of CDC50 proteins. Besides serving a role in the functional maturation of the catalytic α-subunit, the β-subunit also contributes specifically to intrinsic transport properties of the Na+/K+ pump. As β-subunits and CDC50 proteins likely adopted similar structures to accomplish analogous tasks, current knowledge of the Na+/K+-ATPase provides a useful guide for understanding the inner workings of the P4 ATPase class of lipid pumps.  相似文献   

10.

Background  

The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field.  相似文献   

11.
P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.  相似文献   

12.
The K+ and Na+ concentrations in living cells are strictly regulated at almost constant concentrations, high for K+ and low for Na+. Because these concentrations correspond to influx-efflux steady states, K+ and Na+ effluxes and the transporters involved play a central role in the physiology of cells, especially in environments with high Na+ concentrations where a high Na+ influx may be the rule. In eukaryotic cells two P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H+-ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very similar to the sarco/endoplasmic reticulum Ca2+ (SERCA) ATPase, and it probably exchanges Na+ (or K+) for H+. The same exchange is mediated by Na+ (or K+)/H+ antiporters. However, in eukaryotic cells these antiporters are electroneutral and their function depends on a ΔpH across the plasma membrane. Therefore, the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters cannot mediate uphill Na+ efflux. This occurs in some fungal environments and at some points of protozoa parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in flowering plants.  相似文献   

13.
The effect of K+ deficiency on the plasma membrane (PM) H+‐ATPase was studied in young stems of poplar plants (Populus tremula × tremuloides) grown with low or full‐strength K+ supply. Immunological assays using different antibodies were applied to test if K+ deficiency affects the amount of immunodetectable PM H+‐ATPases in the stem tissue. The monoclonal antibody clone 46 E5 B11 revealed an increased abundance of PM H+‐ATPases under conditions of low K+ supply, and immunolabelling experiments showed that this increase was restricted to vessel‐associated cells (VACs) of the wood ray parenchyma. Replacement of the monoclonal antibody by a polyclonal antibody against PM H+‐ATPase gave a specific immunoreactivity on blots as well as tissue sections too, but the labelling intensity showed no difference between plants with low or full‐strength K+ supply. Measurements of extracellular H+ concentrations using non‐invasive, H+‐selective microelectrodes revealed a lowering of the pH at the surface of VACs and an enhancement of net efflux of H+ in plants grown with low K+ supply. The present results indicate an up‐regulation of specific isoforms of the PM H+‐ATPase in VACs under K+‐deficient conditions and suggest a key role for these PM H+‐ATPases in unloading K+ from the xylem stream.  相似文献   

14.
A family of cation ATPase-like molecules from Plasmodium falciparum   总被引:1,自引:0,他引:1       下载免费PDF全文
We report the nucleotide and derived amino acid sequence of the ATPase 1 gene from Plasmodium falciparum. The amino acid sequence shares homology with the family of "P"-type cation translocating ATPases in conserved regions important for nucleotide binding, conformational change, or phosphorylation. The gene, which is present on chromosome 5, has a product longer than any other reported for a P-type ATPase. Interstrain analysis from 12 parasite isolates by the polymerase chain reaction reveals that a 330-bp nucleotide sequence encoding three cytoplasmic regions conserved in cation ATPases (regions a-c) is of constant length. By contrast, another 360-bp sequence which is one of four regions we refer to as "inserts" contains arrays of tandem repeats which show length variation between different parasite isolates. Polymorphism results from differences in the number and types of repeat motif contained in this insert. Inserts are divergent in sequence from other P-type ATPases and share features in common with many malarial antigens. Studies using RNA from the erythrocytic stages of the malarial life cycle suggest that ATPase 1 (including the sequence which encodes tandem repeats) is expressed at the large ring stage of development. Immunolocalization has identified ATPase 1 to be in the region of the parasite plasma membrane and pigment body. These findings suggest a possible model for the genesis of malarial antigens.  相似文献   

15.
Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H+, Ca2+ and K+ in guard cells of wild‐type (Col‐0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1‐1 and the PM H+‐ATPase mutants aha1‐6 and aha1‐7, using a non‐invasive micro‐test technique. We showed that MeJA induced transmembrane H+ efflux, Ca2+ influx and K+ efflux across the PM of Col‐0 guard cells. However, this ion transport was abolished in coi1‐1 guard cells, suggesting that MeJA‐induced transmembrane ion flux requires COI1. Furthermore, the H+ efflux and Ca2+ influx in Col‐0 guard cells was impaired by vanadate pre‐treatment or PM H+‐ATPase mutation, suggesting that the rapid H+ efflux mediated by PM H+‐ATPases could function upstream of the Ca2+ flux. After the rapid H+ efflux, the Col‐0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H+‐ATPase was reduced. Finally, the elevation of cytosolic Ca2+ concentration and the depolarized PM drive the efflux of K+ from the cell, resulting in loss of turgor and closure of the stomata.  相似文献   

16.
A 2.7 kb fragment of Helicobacter pylori UA802 chromosomal DNA was cloned and sequenced. Three open reading frames (designated ORF1, oRF2 and ORF3, respectively) were predicted from the DNA sequence, of which ORF1 and ORF2 appeared to be located within the same operon. The deduced 611-amino-acid sequence of ORF1, a P-type ATPase (designated hpCopA), had striking homology (29-38%) with several bacterial P-type ATPases and contained the potential functional domains conserved in P-type ATPases from various sources ranging from bacterial to human. A protein of 66 amino acids (designated hpCopP) encoded by ORF2 shared extensive sequence similarity with MerP, a periplasmic mercuric ion-transporting protein, and contains the heavy metal-binding motif. Disruption of ORF1 with a chloramphenicol-resistance cassette (CAT) rendered the H. pylori mutants more susceptible to cupric ion than their parental strains, whereas there is no significant alternation of susceptibility to Ni2+, Cd2+ and Hg2+ between the mutants and the parental strains. The results obtained indicate that ORF1 and ORF2 comprise a cation-transporting system which is associated with copper export out of the H. pylori cells.  相似文献   

17.
The Menkes protein (MNK; ATP7A) is a copper-transporting P-type ATPase that is defective in the copper deficiency disorder, Menkes disease. MNK is localized in the trans-Golgi network and transports copper to enzymes synthesized within secretory compartments. However, in cells exposed to excessive copper, MNK traffics to the plasma membrane where it functions in copper efflux. A conserved feature of all P-type ATPases is the formation of an acyl-phosphate intermediate, which occurs as part of the catalytic cycle during cation transport. In this study we investigated the effect of mutations within conserved catalytic regions of MNK on intracellular localization and trafficking from the trans-Golgi network (TGN). Our findings suggest that mutations that block formation of the phosphorylated catalytic intermediate also prevent copper-induced relocalization of MNK from the TGN. Furthermore, mutations in the phosphatase domain, which resulted in hyperphosphorylation of MNK, caused constitutive trafficking from the TGN to the plasma membrane. A similar effect on trafficking was observed with a phosphatase mutation in the closely related copper ATPase, ATP7B, affected in Wilson disease. These findings suggest that the copper-induced trafficking of the Menkes and Wilson disease copper ATPases is associated with the phosphorylated intermediate that is formed during the catalysis of these pumps. Our findings describe a novel mechanism for regulating the subcellular location of a transport protein involving the recognition of intermediate conformations during catalysis.  相似文献   

18.
Wilson disease is an autosomal recessive disorder of copper metabolism. The gene for this disorder has been cloned and identified to encode a copper-transporting ATPase (ATP7B), a member of a large family of cation transporters, the P-type ATPases. In addition to the core elements common to all P-type ATPases, the Wilson copper-transporting ATPase has a large cytoplasmic N-terminus comprised six heavy metal associated (HMA) domains, each of which contains the copper-binding sequence motif GMT/HCXXC. Extensive studies addressing the functional, regulatory, and structural aspects of heavy metal transport by heavy metal transporters in general, have offered great insights into copper transport by Wilson copper-transporting ATPase. The findings from these studies have been used together with homology modeling of the Wilson disease copper-transporting ATPases based on the X-ray structure of the sarcoplasmic reticulum (SR) calcium-ATPase, to present a hypothetical model of the mechanism of copper transport by copper-transporting ATPases.  相似文献   

19.
20.
AggregatingDictyostelium cells release protons when stimulated with cAMP. To find out whether the protons are generated by acidic vesicles or in the cytosol, we permeabilized the cells and found that this did not alter the cAMP-response. Proton efflux in intact cells was inhibited by preincubation with the V-type H+ ATPase inhibitor concanamycin A and with the plasma membrane H+ ATPase blocker miconazole. Surprisingly, miconazole also inhibited efflux in permeabilized cells, indicating that this type of H+ ATPase is present on intracellular vesicles as well. Vesicular acidification was inhibited by miconazole and by concanamycin A, suggesting that the acidic vesicles contain both V-type and P-type H+ ATPases. Moreover, concanamycin A and miconazole acted in concert, both in intact cells and in vesicles. The mechanism of cAMP-induced Ca2+-fluxes involves phospholipase A2 activity. Fatty acids circumvent the plasma membrane and stimulate vesicular Ca2+-efflux. Here we show that arachidonic acid elicited H+-efflux not only from intact cells but also from acidic vesicles. The target of regulation by arachidonic acid seemed to be the vesicular Ca2+-relase channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号