首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties. The obtained experimental results show that the atmospheric plasma treatment is suitable to increase the mechanical performance of PLA–PLA adhesive joints. Optimum conditions for the atmospheric plasma treatment were obtained with a nozzle–substrate distance of 10 mm and an advance rate in the 100–300 mm s?1 range; for these particular conditions, the effectiveness of the surface modification is the highest. The main plasma‐acting mechanisms are microetching together with the insertion of polar groups which lead to an interesting synergy that causes a remarkable increase in mechanical properties of adhesion joints. In particular, the shear strength of untreated PLA–PLA adhesion joints is close to 50 N cm?2 and this value is increased up to values of about 168.7 N cm?2 with optimum plasma treatment conditions. This indicates that atmospheric plasma treatment is both a technical and an environmental friendly technique to improve mechanical performance of PLA adhesive joints. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42391.  相似文献   

2.
Poly(lactic acid) (PLA) and its blends with starch and methylenediphenyl diisocyanate (MDI) were extruded in a twin‐screw extruder and compress‐molded in a dog‐bone shaped tensile bars to form test specimens. The thermalgravimetric profile and thermal endurance of these samples were characterized. The effect of physical aging on mechanical and thermal properties of these samples was evaluated. For the aging study, samples were stored at 25°C and relative humidity fluctuating between 90 and 30%, from 2 to 180 days, with or without a polyethylene bag as a moisture barrier. Physical aging of pure PLA samples stored in a controlled environment from 2 to 360 days was also evaluated. The presence of MDI in the PLA/starch composite did not affect the thermal decomposition profile. The PLA showed the highest Arrhenius activation energy and strongest thermal endurance of all samples, followed by PLA/starch/MDI and PLA/starch. Exposure of the samples to storage conditions with fluctuating relative humidity (RH) significantly affects thermal‐mechanical performance of PLA and its composites. But, the samples stored in plastic bags can minimize such effects. Mechanical properties of PLA and PLA/starch‐based composites sealed in plastic bags had no significant change during 30‐day storage in fluctuating humidity conditions (30–90% RH). POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
The durability of polylactide (PLA) blended with polycarbonate (PC) was assessed by exposure to conditions of elevated temperature and humidity over a period of several weeks. Mechanical performance, moisture absorption, chemical composition, and thermal properties were monitored as a function of continuous conditioning at 70°C and 90% relative humidity (RH). All PLA and PC/PLA blends showed significant moisture absorption and hydrolysis, resulting in degradation of properties. Furthermore, while the addition of PC was intended to improve the durability of the blend over neat PLA, it was found that the hydrolysis products of PLA accelerated the degradation of PC itself. This study shows for the first time the hydrolysis behavior of PC/PLA blends in an increasingly acid environment during heat and humidity conditioning. These injection‐molding grades of PLA‐based resins are currently not suitable for use in applications that require long‐term durability in environments subject to elevated temperature and humidity, such as automotive interiors. Further material formulation work is required before use in injection‐molded applications for automotive. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
A stable superhydrophobic coating was successfully deposited on commercial silicate‐based orange phosphor by using atmospheric pressure dielectric barrier discharge plasma with hexamethyldisiloxane (HMDSO) and HMDSO/toluene mixture as precursors. Owning to the good optical properties, the deposited film acts not only as a hydrophobic protective layer but also as an antireflection optical thin film capable of improving the phosphor photoluminescence efficiency. The plasma‐polymerized film based on Si?O?Si backbone containing methyl and phenyl nonpolar functional groups exhibited high‐water‐repellent characteristics. It was found that the water contact angle gradually increased with increasing the aging time and remained unchanged at about 140° after 1‐month aging. Besides, the thermal stability of the coated phosphor under high‐temperature condition was substantially enhanced by the aging. The findings of this work can contribute to improving the durability and reliability of the phosphor, eventually the long‐term stability of phosphor‐based light emitting diodes in practical applications. © 2014 American Institute of Chemical Engineers AIChE J, 60: 829–838, 2014  相似文献   

5.
Di(isononyl) cyclohexane‐1,2‐dicarboxylate (DINCH) was used as a new plasticizer for poly(lactic acid) (PLA), and the effects of DINCH and tributyl citrate ester (TBC) on the morphology, mechanical and thermal properties, and durability of PLA were compared. DINCH has limited compatibility with PLA, leading to PLA/DINCH blends with phase separation in which DINCH forms spherical dispersed phase. TBC is compatible with PLA and evenly distributed in PLA. Plasticized PLA with 10 and 20 phr DINCH have a constant glass transition temperature (Tg) of 50°C and are stiff materials with high elongation at break and impact strength. TBC could significantly decrease the Tg and increase the crystallinity of PLA, and PLA/TBC (100/20) blend is a soft material with a Tg of 24°C. The durability of plasticized PLA was characterized by weight loss measurement under water immersion, mechanical properties, and thermal analysis. The results reveal that PLA/DINCH blends have better water resistance and aging resistance properties than PLA/TBC blends, which is attributed to the relatively high hydrophobicity of DINCH and high Tg of PLA/DINCH blends. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
The stability of biopolymeric multilayer film fabricated from poly(lactide) (PLA) and glycerol‐plasticized whey protein isolate (WPI), PLA/WPI/PLA, at 4 °C, 25 °C, and 35 °C were examined. The PLA/WPI/PLA film showed small rates of decreasing in transparency and increasing total color difference. Storage at 35 °C caused the film to become stronger and less extendible. The multilayer structures showed lower tensile strength and higher elongation over storage at 4 °C and 25 °C. Oxygen and water vapor barrier abilities of PLA/WPI/PLA gradually improved over time, especially at 35 °C. The changes in properties of laminate structure can be empirically fitted with either zero‐ or first‐order reaction kinetics, with overall R2 ≥ 0.90. The results suggested that PLA/WPI/PLA film could be stored at 4–35 °C, 50–59% RH, for extended period of inventory time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43547.  相似文献   

7.
The aging effects of atmospheric pressure plasma treated fiber surfaces are important for storage and processing of the fibers. One of the high-performance fibers, ultrahigh modulus polyethylene (UHMPE) fiber, was chosen as a model system to investigate the aging process of atmospheric pressure plasma jet (APPJ) treated fibers surfaces 0, 7, 15 and 30 days after initial plasma treatment. The fiber was first plasma-treated and then stored at temperatures varying from ?80 to 80°C on the same relative humidity (RH, 0%) and on RH of 0%, 65% and 100% at the same temperature of 20°C. Immediately after the plasma treatment, scanning electron microscope (SEM) showed the roughened fiber surface. X-ray photoelectron spectroscopy analysis showed changed surface chemical compositions. Contact-angle measurement showed increased surface wettability and microbond test showed an increase in IFSS. With increasing relative humidity or decreasing temperature, the IFSS value decreased and the contact angle increased more slowly. However, after 30 days, the IFSS values and contact angles reached a similar level for all groups. Moisture showed no effect on the single fiber tensile strengths during aging. The reasons for the observed aging behavior could be that decreasing temperature or increasing relative humidity hindered the surface rearrangement of polymer chains after plasma treatment.  相似文献   

8.
The surface and adhesion properties of different molecular weight poly(ethylene glycol) (PEG) (400, 1500, and 3000 g/mol) on untreated and air‐atmospheric plasma‐treated PET woven fabrics were studied, with the aim of developing durable hydrophilic PET fibrous structures. PEG application was carried out by padding of the PET fabric in aqueous solution of PEG followed by curing and drying. The surface properties of the PEG‐coated PET fabrics were then characterized using wicking test to measure the water contact angle (θ°) and capillary weight (Wc), and using atomic force microscopy (AFM) images in the tapping mode. Results showed that without a prior air‐atmospheric plasma treatment of the PET fabric, the water contact angle decreased and capillary weight increased with the three PEGs, implying an increase in the hydrophilicity of both inner and outer PET fabric fiber surface. Air‐plasma treatment of the PET fabrics before PEG coating increases further the hydrophilicity of the inner fabric fiber surface: the capillary weight was almost doubled in the case of the three PEGs. Best results were obtained with PEG 1500: water contact angle decreasing from 82° to 51°, and the capillary weight increasing from 11 mg to 134 mg. Moreover, wash fastness test at room temperature and at 80°C confirms improved adhesion of PEG‐1500 to the plasma‐treated PET woven fabric surface, while under the same conditions the plasma‐treated PET without PEG loses completely its hydrophilic character. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

9.
High‐density polyethylene (HDPE) pellets were modified via atmospheric plasma treatment using nitrogen flushing. The new application of plasma treatment was introduced in this work, namely a batch treatment on plastic pellets just prior to its feeding to the extrusion process in comparison with the conventional surface treatment of the plastic sheet. The effect of treatment time (15–120 s) on wettability, chemical, thermal, and mechanical properties of the modified HDPE were investigated and compared with the typical surface‐treated HDPE and untreated HDPE. The pellet treatment distributed well the hydrophilicity groups so that both surface and bulk properties were improved. It showed an enhancement of wettability similar to surface treatment at short treatment time (15 s). Attenuated total reflection‐Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy revealed the presence of new chemical groups (nitrogen and oxygen up to 5 and 42 at %, respectively). In addition, crosslinked structure was also disclosed by solvent extraction (gel content of 3.5–5.5 wt % increased with treatment time) and significantly affected to decrease the crystallinity from 76% in the untreated sample to 63%. The decomposition process of the pellet treatment samples was delayed. Lastly, pellet treatment yielded advantages in remaining hydrophilicity during aging and improving mechanical properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43011.  相似文献   

10.
The durability of EN AW 6082-T651 aluminium alloy joints bonded with a toughened acrylic adhesive was investigated upon exposure to wet environments (humidity, water immersion and salt water immersion). Environmentally-friendly surface treatments were used to avoid hexavalent chromium. Single lap shear tests were used to determine the durability of the adhesively bonded joints. Specimens were exposed to 31% and 95% relative humidity and submerged in deionized water and 3 wt% sodium chloride solution at 25°C and 50°C, for 10, 30 and 90 days. The data collected in the experiments showed that the durability was higher for surfaces treated with γ-methacryloxypropyltrimethoxysilane (γ-MPS) and sulfo-ferric etchant (P2 etch) than other surface treatments. Both these treatments improved considerably the durability in all environments tested. The results indicate that specimens even without surface treatment maintained a significant residual strength after exposure to low humidity environment (room temperature at 31% RH). The joints exposed to a high humidity environment showed a higher reduction in adhesive strength than those immersed in deionized water and saline solution.  相似文献   

11.
Electrically conductive adhesives (ECAs) have been explored as a tin/lead (Sn/Pb) solder alternative for attaching encapsulated surface mount components on rigid and flexible printed circuits. However, limited practical use of conductive adhesives in surface mount applications is found because of the limitations and concerns of current commercial ECAs. One critical limitation is the significant increase of joint resistance with Sn/Pb finished components under 85°C/85% relative humidity (RH) aging. Conductive adhesives with stable joint resistance are especially desirable. In this study, a novel conductive adhesive system that is based on epoxy resins has been developed. Conductive adhesives from this system show very stable joint resistance with Sn/Pb‐finished components during 85°C/85% RH aging. One ECA selected from this system has been tested here and compared with two popular commercial surface mount conductive adhesives. ECA properties studied included cure profile, glass transition temperature (Tg), bulk resistivity, moisture absorption, die shear adhesion strength, and shift of joint resistance with Sn/Pb metallization under 85°C/85% RH aging. It was found that, compared to the commercial conductive adhesives, our in‐house conductive adhesive had higher Tg, comparable bulk resistivity, lower moisture absorption, comparable adhesion strength, and most importantly, much more stable joint resistance. Therefore, this conductive adhesive system should have better performance for surface mount applications than current commercial surface mount conductive adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 399–406, 1999  相似文献   

12.
Poly(lactic acid) (PLA)/kraft pulp fiber (30 wt%) composites were prepared with and without a coupling agent (epoxidized linseed oil, ELO, 1.5 wt%) by injection molding. The non-annealed composite samples, along with lean PLA, were exposed to two hydro-thermal conditions: cyclic 50% RH/90% RH at 23 and 50°C, both up to 42 days. The aging effects were observed by size exclusion chromatography, differential scanning calorimetry, dynamic and tensile mechanical analysis, and fracture surface imaging. ELO temporarily accelerated the material's internal transition from viscous to an increasingly elastic response during the aging at 50°C. ELO also slowed down the tensile strength reduction of the composites at 50°C. These observations were explained with the hydrophobic ELO molecules' coupling and plasticizing effects at fiber/matrix interfaces. No effects were observed at 23°C.  相似文献   

13.
To determine the effect of moisture regain of wool on atmospheric pressure plasma treatment results, wool fibers and fabrics conditioned in 100% relative humidity (RH) and 65% RH were treated by an atmospheric pressure plasma jet with pure helium and helium/oxygen mixed gas, respectively. Scanning electron microscope (SEM) indicated that scales of wool fiber were smoothened for fibers conditioned in the 100% RH. X‐ray photoelectron spectroscopy (XPS) showed that carbon content decreased substantially after the plasma treatment. Surface chemical composition of 100% RH conditioned groups changed more significantly than the 65% RH conditioned groups. Water contact angle decreased significantly after the plasma treatments. In shrinkage test, plasma‐treated wool fabrics preconditioned in 100% RH showed the lowest shrinkage ratios of 5% and 6%, below 8% is required for machine‐washable wool fabrics according to ISO standard. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
An electrodynamic balance was used to investigate the uptake of octanal vapor by single sulfuric acid droplets levitated under various relative humidity (RH) conditions and gas-phase octanal concentrations. In the high octanal concentration experiments (200–300 ppm), we observed that the organic mass yield depended on the acidity of the sulfuric acid droplets and significant uptake of octanal only occurred when the RH was about 10% (H 2 SO 4 wt% ~ 64%). Furthermore, repartitioning of only a portion of condensed organic compounds was observed after active dilution with octanal-free compressed air, indicating that low-volatility products had formed and that repartitioning is important in affecting the organic mass fraction and chemical composition of atmospheric organic aerosols. When a relatively lower octanal concentration (700–900 ppb) was used, no significant uptake of octanal vapor by the sulfuric acid droplets was observed even at 10% RH with long exposure time (>25 h). Our findings suggest that both particle acidity and gas-phase octanal concentration are the critical factors that influence the organic mass yield of levitated acidic droplets. Because of the severe conditions of low RH and high octanal conditions required to effect the reactions, the reactive uptake of aldehydes, especially those that have chemical structures and properties very similar to octanal, into acidic particles may not be an important pathway in secondary organic aerosol formation under actual atmospheric conditions.  相似文献   

15.
The aging phenomena of a poly(ether ether keton) (PEEK) surface hydrophilically modified via various protocols was investigated. The use of plasma treatment or chemical etching methods offers a relatively convenient surface modification route. However, the effects of hydrophilic treatment quickly disappeared and its original surface property was recovered within a few hours or a few days when stored at ambient conditions. Surface treatment based on a single‐layered chemical grafting method rendered an excellent hydrophilic surface with an initial contact angle of <15° and an improved retardation of surface aging. However, the contact angle of the modified PEEK specimen gradually increased with time and eventually reached ~50° after 23 days. A new method for the long‐term stable hydrophilic surface treatment of PEEK using a multilayered chemical grafting strategy was also developed. With this regard, aging of the modified surface could be significantly retarded over ~90 days. It was believed that the effectiveness of the surface modification and the retarded aging phenomena via the multilayered hydrophilic treatment could be attributed to mechanical and chemical stability of the covalently bonded active surface groups on the grafted polymer networks. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46042.  相似文献   

16.
In this study, porous micron‐sized fibers of polylactic acid (PLA) are fabricated via electrospinning of PLA‐dichloromethane (DCM)‐hexane systems with no post treatment involved. Several compositions from the liquid‐liquid phase separated region of the phase diagram of this ternary system are selected and their electrospinnability are investigated throughout their phase separation process before gelation. We show that under constant processing and ambient parameters, there is a phase separation shelf time for each composition wherein the viscoelasticity of the systems is optimum to produce long, uniform porous fibers. For the first time, we investigate the effect of aging time during phase separation on the morphology of the electrospun fibers using scanning electron microscopy (SEM). Based on our results, certain phase separated systems provide a range of viscosity allowing for the production of porous spherical micro beads or fibers via electrospraying and electrospinning, respectively. It is also shown that obtaining long, uniform fibers from electrospinning of highly phase separated systems, e.g., a gel, is not feasible due to the high degree of crystallinity of their polymer‐rich domains and the solid‐like yielding behavior. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44862.  相似文献   

17.
The tensile relaxation modulus of a commercially available proton exchange membrane, Nafion® NRE 211, was obtained over a range of humidity levels and temperatures using a commercial dynamic mechanical analyzer (DMA). Hygral stress relaxation master curves were first constructed, followed by a hygrothermal master curve using the time temperature moisture superposition principle. The hygrothermal master curve was fitted using a 10‐term Prony series and validated using longer term stress relaxation tests. To validate the results from the stress relaxation experiments, short and long‐term creep compliance was converted into stress relaxation modulus using a well‐known viscoelastic conversion formula, and compared with the relaxation modulus obtained under identical conditions. Good agreement was found between the two datasets. It was evident that relaxation data at 2% RH at the test temperatures was not superposable with the master curves obtained at higher relative humidity (10% < RH < 90%) at the temperature range 70 °C < T < 90 °C. It was observed that the longer term relaxation modulus under humid conditions matched well with the hygrothermal master curve; however, the longer term relaxation modulus under dry conditions was significantly higher than the relaxation master curve obtained under dry conditions, raising the possibility of a physical aging process in the ionomer and/or irreversible morphological changes in the membrane under dry conditions.  相似文献   

18.
Partially acetylated cellulose nanofibers (CNF) were chemically extracted from sisal fibers and the performance of those CNF as nanofillers for polylactide (PLA) for food packaging applications was evaluated. Three PLA nanocomposites; PLA/CNF (cellulose nanofibers), PLA/CNC (nanocrystalline cellulose), and PLA/C30B (CloisiteTM 30B, an organically modified montmorillonite clay) were prepared and their properties were evaluated. It was found that CNF reinforced composites showed a larger decrease on oxygen transmission rate (OTR) than the clay‐based composites; (PLA/CNF 1% nanocomposite showed a 63% of reduction at 23°C and 50% RH while PLA/C30B 1% showed a 26% decrease) and similar behavior on terms of water vapor barrier properties with 46 and 43%, respectively of decrease on water vapor transmission rate at 23°C and 50% RH (relative humidity). In terms of mechanical and thermomechanical properties, CNF‐based nanocomposites showed better performance than clay‐based composites without affecting significantly the optical transparency. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43257.  相似文献   

19.
Nylon 6 was treated with a dielectric barrier discharge, i.e. atmospheric plasma at ordinary air pressure. Factors influencing the dyeing process of nylon 6 using indigo blue powder were studied. The mechanism and effect of this dyeing technology were compared with those of conventional technology. Dyeing after plasma treatment at 30–50 °C can produce high dye uptake in a short time. Notably, dyeing after plasma treatment is beneficial for energy conservation. However, at 60–70 °C, the K/S values of plasma‐treatment dyeing sharply increased over a short time, after which they remained largely unchanged. This finding indicated that the dyeing mechanism changed. The speed constant of dyeing after plasma treatment is 2.8 times that of conventional dyeing. The K/S values of dyeing samples after plasma treatment approached the dyeing saturation K/S value in a short time; therefore, this method of dyeing after plasma treatment achieves energy conservation and efficiency in a brief period of time. Conversely, conventional dyeing is more effective at high temperatures but consumes more energy. The adaptive electro‐discharge condition is achieved under the treatment conditions of 375 W for 2 min. The chromatic aberration of the dyed samples after plasma treatment is smaller than that of conventional dyeing at 50 °C for 75 min.  相似文献   

20.
Display glasses meet the demands of the flat panel display industry vis‐à‐vis their composition, flatness, and forming processes. Here, we report the high‐resolution time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) characterization of Corning® EAGLE XG®, a widely used display glass, and subsequent chemometric analyses of these data. Samples analyzed included the as‐formed glass, fracture surfaces from remelt bars, and as‐formed surfaces subsequently exposed to process‐relevant treatments, including strong acids and bases, two industrial detergents, and an atmospheric‐pressure plasma treatment. Elemental signals in the positive ion ToF‐SIMS spectra respond to surface treatments. Acidic conditions leach non‐silica components from the surfaces, while basic treatments extract these species less efficiently. The detergents leave residues of Na+ and K+. The atmospheric pressure (AP) plasma treatment had little effect on the surface composition, while the melt surface differs significantly from the bulk fracture surface. Above ca. 75 m/z, the negative ion spectra are dominated by two series of homologous cluster ions with compositions of SinO2n+2Al? and SimHO2m+1H?. The presence of these clusters suggests that analogous structures exist at the near surface regions of the samples. In a series of multivariate curve resolution (MCR) analyses, two or three MCR components captured >95% of the variance in the data for these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号