首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
采用十六烷基三甲基溴化铵(CTAB)的有序聚集体为模板辅助制备了纳米TiO2,通过XRD和比表面测试(BET)对纳米TiO2进行表征,详细考察了投料比、投料时间、水浴温度、煅烧温度和煅烧时间等对TiO2/S2-/SO2-3耦合系统产氢性能的影响.结果表明,n(CTAB)∶n(TiO2)为0.10,投料时间为40 min,水浴温度40 ℃,在450 ℃下锻烧2 h时,制备的TiO2/S2-/SO2-3耦合产氢系统3 h累计产氢694.5 mL,较S2-/SO2-3独立系统的产氢量提高36.3%,最大瞬时产氢速率为11.9 mL/min.根据试验结果对耦合产氢的反应机理进行了初步探索.  相似文献   

2.
以三氯氧磷和环氧氯丙烷为原料,在自制催化剂固体超强酸SO4^2-/TiO2-Al2O3/La^3+作用下合成了磷酸三(1,3-二氯丙基)酯,研究了SO4^2-/TiO2-Al2O3/La^3+对合成反应的影响.结果表明:在n(环氧氯丙烷):n(三氯氧磷)=3.3:1、催化剂用量为三氯氧磷的2%、反应时间为3h时,酯化率达98.5%.该催化剂易于回收且可重复使用.  相似文献   

3.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

4.
采用SO4^2-/TiO2代替传统工艺中的硫酸水溶液,对溴氨酸进行ullmann缩合反应.考察了反应温度、反应时间、催化剂投加量等因素对反应收率的影响.结果表明:在2.02g溴氨酸、0.95g铜粉、80mL蒸馏水的体系中,SO4^2-/TiO2用量为1.00g,在70℃下反应90min,溴氨酸缩合产物收率可达91%以上.催化剂可回收,用于光催化氧化溴氨酸缩舍反应产生的废水.  相似文献   

5.
用微波、红外、烘箱3种干燥方法制备了负载型纳米ZrO2/Al2O3复合载体,同时在复合载体表面负载SO4^2-制成SO4^2-/ZrO2/Al2O3催化剂,将此催化剂用于α-蒎烯催化异构化反应中。用XRD、FT—IR、TPD等对催化剂的表面积、孔径、晶相结构、酸强度等进行了表征。结果表明,微波干燥法制备的复合载体催化剂(SO4^2-/ZA-W)中ZrO2的粒度较小(平均6nm),比表面积为156.1m^2/g,平均孔径为4.95nm,其表面酸性中心数和酸强度均高于红外干燥法和烘箱干燥法制备的催化剂。SO4^2-/ZA-W催化剂在α-蒎烯催化异化反应中具有较高的活性,α-蒎烯转化率为95.6%,α-松油烯、柠檬烯等单环萜烯的含量达到56.5%。  相似文献   

6.
报道了以稀土改性固体超强酸SO4^2-/TiO2-MoO3-La2O3为多相催化剂,通过丁醛和乙二醇为原料合成丁醛乙二醇缩醛,探讨了SO4^2-/TiO2-MoO3-La2O3催化剂对缩醛反应的催化活性,较系统地研究了原料量比,催化剂用量,反应时间诸因素对产品收率的影响。实验表明:在n(丁醛):n(乙二醇)=1:1.5,催化剂用量为反应物料总质量分数的0.80%,环己烷为带水剂,反应时间1.0h的优化条件下,丁醛乙二醇缩醛的收率可达81.9%,由此可见:SO4^2-/TiO2-MoO3-La2O3是合成丁醛乙二醇缩醛的优良催化剂,具有良好的应用前景。  相似文献   

7.
采用浸渍法制备了负裁稀土的固体超强酸Ce(Ⅳ)-SO4^2-/TiO2催化剂,以柠檬酸三丁酯的合成为探针反应进行了单因素测试.实验结果表明,当Ce(SO4)2-4H2O的质量分数(占浸渍液)为2.0%,H2SO4浸渍液浓度为0.6mol/L,酸醇摩尔比1:4,催化剂用量为1.2g,反应时间为3.0h时,酯化率为86.5%.重复使用5次后,其酯化率仍达78,7%.  相似文献   

8.
在聚乳酸(PLA)体系中添加无机抗菌剂纳米二氧化钛银交换体(Ag^+/TiO2),研究纳米Ag^+/TiO2含量对PLA薄膜力学性能、透氧透湿性能及抗菌性能的影响.结果表明:随着纳米Ag^+/TiO2含量的增加,所制备的PLA薄膜的拉伸强度先增大后减小,而断裂伸长率逐渐下降;在含量为1份时,薄膜的拉伸强度为38.8MPa、断裂伸长率为263.5%、透湿系数为3.8×10^13g·cm/(cm^2·s·Pa)、透氧系数为38×10^15cm^3·cm/(cm^2·s·Pa),薄膜对大肠杆菌、金黄色葡萄球菌、霉菌的抗菌率达到95%以上.  相似文献   

9.
对TiO2纳米管在光催化-膜分离三相流化床耦合反应装置(简称耦合反应装置)中的光催化降解性能及其对膜污染特性的影响进行了研究。结果表明:TiO2纳米管的光催化降解性能随水热时间和煅烧温度的增加而先增加、后降低,膜污染则随着水热时间和煅烧温度的增加先降低、后增加,最佳的水热时间和煅烧温度分别为12 h和400℃。膜污染随气冲洗时间间隔的增加而呈现逐渐降低的变化规律,适宜的气冲洗时间间隔为30 min。耦合反应装置间歇运行时的膜污染比连续运行时的轻。TiO2纳米管的光催化降解性能优于商业TiO2的,且其对膜污染的影响比商业TiO2的轻。  相似文献   

10.
纳米SO42-/Sm2O3催化合成乙酸异戊酯的研究   总被引:3,自引:0,他引:3  
针对传统的乙酸异戊酯生产主要以浓H2SO4做催化剂,具有选择性低、设备易腐蚀、产品易碳化及环境污染严重等缺点,利用自蔓延低温燃烧技术成功开发了一种纳米固体超强酸SO4^2-/Sm2O3催化剂.考察了该催化剂对乙酸与异戊醇反应制备乙酸异戊酯的催化活性,并与浓H2SO4、非纳米级SO4^2-/Sm2O3固体超强酸进行了比较.结果表明,纳米级固体超强酸对该酯化反应具有良好的催化活性,且具有无污染、无腐蚀,可以循环利用等优点.实验研究表明,当n(乙酸):n(异戊酯)=1:4,催化剂用量为0.25g,反应时间为2h,反应温度为110℃,其酯化率高达96%以上.  相似文献   

11.
用溶胶凝胶法制备了固体超强酸,用XRD和SEM对其进行了表征,并用该固体超强酸催化合成了乙酸乙酯。结果表明:TiO2/SO24-的最佳焙烧时间为3 h,最佳焙烧温度为500℃,最佳浸渍浓度为1.5 mol/L;TiO2/SO24-催化酯化反应的最佳反应时间15 min,反应温度100-105℃,固体酸的投加量2%,最佳醇酸比1 1.3;并可重复使用,使之成为安全、绿色、环境友好的催化剂。  相似文献   

12.
采用溶胶-凝胶法制备SO42-/TiO2固体超强酸,以异辛酸与季戊四醇的酯化反应为探针反应,考察浸渍液种类及浓度、焙烧温度对固体超强酸催化性能的影响。用流动指示剂法测定催化剂的酸强度,并采用原位吡啶吸附的IR谱图对催化剂进行表征。结果表明,在H2SO4浸渍液浓度为1.0 mol.L-1、500℃下焙烧3 h制备的SO42-/TiO2催化剂活性最好,酯化率可达到85.0%。  相似文献   

13.
SO_4~(2-)/TiO_2固体超强酸催化剂的表面化学研究   总被引:9,自引:0,他引:9  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO42-/TiO2固体超强酸。用XRD、LRS方法研究了SO42-/TiO2和TiO2的本体和表面结构;用化学分析法、Hammett指示剂滴定法和吡啶吸附的FT-IR光谱法测定了SO42-/TiO2的S含量、酸强度、酸中心类型和SO42-/TiO2表面上SO42-与TiO2表面的结合形式;用XPS测定了SO42-/TiO2的能量。研究结果表明,当预处理温度在425~575℃内,SO42-/TiO2催化剂体系可以形成固体超强酸,同时其表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;在本体中和表面上主要呈金红石结构,并没有Ti(SO4)2和TiOSO4的晶型存在;SO42-/TiO2表面上的OH为Bronsted酸中心,Ti4+上的空位为Lewis酸中心,SO42-以齿桥的形式与Ti4+配位,由于S+6的强吸电子能力而产生强的电子诱导效应,从而产生超强酸中心。  相似文献   

14.
以TiO2为载体,采用沉淀浸渍法制备负载型SO4^2-/TiO2固体超强酸催化刑.运用酸强度测试、比表面积、全硫测定、IR、XRD等方法对所制备的催化剂进行表征.测试结果表明,所制备的催化剂具有固体酸催化刑的特征.并探讨焙烧温度及浸渍液浓度对固体超强酸结构及酸性的影响.  相似文献   

15.
报道了以稀土改性固体超强酸SO42-/TiO2-MoO3-La2O3为多相催化剂,通过丁醛和乙二醇为原料合成丁醛乙二醇缩醛,探讨了SO42-/TiO2-MoO3-La2O3催化剂对缩醛反应的催化活性,较系统地研究了原料量比,催化剂用量,反应时间诸因素对产品收率的影响。实验表明:在n(丁醛):n(乙二醇)=1:1.5,催化剂用量为反应物料总质量分数的0.80%,环己烷为带水剂,反应时间1.0h的优化条件下,丁醛乙二醇缩醛的收率可达81.9%,由此可见:SO42-/TiO2-MoO3-La2O3是合成丁醛乙二醇缩醛的优良催化剂,具有良好的应用前景。  相似文献   

16.
为利用TiO2作为光催化降解水中有机污染物,以铁铝水滑石为载体,以CeO2掺杂的TiO2为活性组分,制得光催化剂前体,再以SO^2-4对其进行修饰,制得了SO2-4/CeO2-TiO2/HTLC 光催化剂。采用XRD、SEM、EDS 和UV-Vis DRS等手段对催化剂进行了表征;以甲基橙为模拟污染物,考察了催化剂样品的光催化性能。实验结果表明:CeO2掺杂TiO2粒子在可见光区吸光性能高于TiO2;SO2-4与CeO2-TiO2/HTLC有协同催化作用,SO2-4/CeO2-TiO2/HTLC光催化剂对可见光的吸收大大增强。经模拟日光照射2 h,SO2-4改性的15%( CeO2-TiO2)/HTLC催化剂对甲基橙的脱色率达到93%。  相似文献   

17.
制备了SO4 2 -/ZrO2 固体超强酸催化剂 ,用Hammett指示剂法和吡啶吸附的FT -IR光谱法测定了其酸强度和酸中心类型 ;以邻二甲苯和苯乙烯生成 1-苯基 - 1- (3,4-二甲基苯基 ) -乙烷 (PXE)的烷基化为探针反应 ,研究了焙烧温度对催化性能的影响以及反应温度和苯乙烯的加料方式对产物收率的影响。结果表明 ,当焙烧温度高于 5 0 0℃ ,SO4 2 -/ZrO2 可以形成超强酸 ,其表面上同时存在Lewis酸中心和Bronsted酸中心 ;SO4 2 -/ZrO2 固体超强酸催化剂在邻二甲苯和苯乙烯的烷基化反应中表现出高催化活性 ,并没有苯乙烯的副反应发生 ;苯乙烯的加料方式对产物收率有明显影响 ;反应温度高于 10 0℃ ,反应温度对产物收率影响较小  相似文献   

18.
以取代苯甲醛,乙酰乙酸乙酯和尿素为原料,以溶胶凝胶法制备的H3PW12O40/Ti O2-SiO2为催化剂,催化合成3,4-二氢嘧啶-2(1H)-酮衍生物,考察了三组分摩尔比、反应温度、催化剂用量、反应时间对反应收率的影响。研究表明,H3PW12O40/TiO2-SiO2是合成3,4-二氢嘧啶-2(1H)-酮衍生物的良好催化剂,在取代苯甲醛的用量为0.04 mol,n(取代苯甲醛)∶n(乙酰乙酸乙酯)∶n(尿素)=1.0∶1.2∶1.5,催化剂的用量占反应物料总质量的2.5%,反应温度为90℃,反应时间为75min。在此优化条件下,3,4-二氢嘧啶-2(1H)-酮衍生物的收率可达53.7%~94.3%。催化剂经IR、XRD、SEM表征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号