首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Warm spray is a novel thermal spray technique that allows the formation of dense and relatively pure Ti-6Al-4V coatings due to its capability to control the temperature of the propellant gas by diluting the combustion flame with an inert gas such as nitrogen. Recently, its combustion pressure has been increased from 1 to 4 MPa aiming to further increase particle velocity to over 1000 m/s. Two series of coatings with combustion pressure of 1 and 4 MPa and various nitrogen flow rates were prepared in this study. Effects of combustion pressure and nitrogen flow rate on the microstructure and mechanical properties of the Ti-6Al-4V coatings were systematically studied. Miniature tensile specimens with a total length of about 9 mm were used for static tensile tests. It was found that the spray parameters affect both the porosity and oxygen content of the coatings significantly and had remarkable effects on their mechanical properties. High level of porosity in the Ti-6Al-4V coatings reduced the effective cross-sectional area of the mini-specimens and caused a drop in their tensile strength and Young’s modulus. Subsequent heat treatments were found effective in significantly recovering the mechanical properties of the as-sprayed coatings.  相似文献   

2.
Current Status and Future Prospects of Warm Spray Technology   总被引:1,自引:0,他引:1  
A modification of high-velocity oxy-fuel (HVOF) thermal spray process named as warm spray (WS) has been developed. By injecting room temperature inert gas into the combustion gas jet of HVOF, the temperature of the propellant gas can be controlled in a range approximately from 2300 to 1000 K so that many powder materials can be deposited in thermally softened state at high impact velocity. In this review, the characteristics of WS process were analyzed by using gas dynamic simulation of the flow field and heating/acceleration of powder particles in comparison with HVOF, cold spray (CS), and high-velocity air-fuel (HVAF) spray. Transmission electron microscopy of WS and CS titanium splats revealed marked differences in the microstructures stemming from the different impact temperatures. Mechanical properties of several metallic coatings formed under different WS and CS conditions were compared. Characteristics of WC-Co coatings made by WS were demonstrated for wear resistant applications.  相似文献   

3.
The warm spray (WS) gun was developed to make an oxidation-free coating of temperature-sensitive material, such as titanium and copper, on a substrate. The gun has a combustion chamber followed by a mixing chamber, in which the combustion gas is mixed with the nitrogen gas at room temperature. The temperature of the mixed gas can be controlled in the range of about 1000-2500 K by adjusting the mass flow rate of nitrogen gas. The gas in the mixing chamber is accelerated to supersonic speed through a converging-diverging nozzle followed by a straight barrel. This paper shows how to construct the mathematical model of the gas flow and particle velocity/temperature of the WS process. The model consists of four parts: (a) thermodynamic and gas-dynamic calculations of combustion and mixing chambers, (b) quasi-one-dimensional calculation of the internal gas flow of the gun, (c) semiempirical calculation of the jet flow from the gun exit, and (d) calculation of particle velocity and temperature traveling in the gas flow. The validity of the mathematical model is confirmed by the experimental results of the aluminum particle sprayed by the WS gun.  相似文献   

4.
The cold spray of Ti-6Al-4V coatings deposited on Ti-6Al-4V substrates has been investigated. Coatings were produced using nitrogen and helium as propellant gases and subsequently heat treated with various temperature-time conditions. The microstructure was characterized by SEM and optical microscopy while mechanical properties were measured by microhardness and tensile testing. It is shown that coatings sprayed with nitrogen gas were relatively porous in comparison to the nearly completely dense coatings obtained with helium gas. In the as-sprayed condition, coatings displayed high hardness but low tensile strength. Heat treatments at temperatures of 600 °C and higher resulted in a decrease in hardness due to microstructural changes within the particles including recovery, recrystallization, and/or phase transformation. However, an increase in tensile strength was attributed to improved inter-particle bonding due to an observed change from brittle to ductile features on the fracture surface. The highest strength coating produced was a helium-sprayed coating annealed at 600 °C, which featured a tensile strength ~85% of the minimum required bulk value and coating/substrate microstructures similar to the as-received powder/substrate microstructures.  相似文献   

5.
Thick titanium coatings were prepared by the warm spraying (WS) and cold spraying (CS) processes to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particles were numerically calculated. Significant oxidation occurred in the WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of a high velocity oxy-fuel (HVOF) spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In the CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Even when scanning electron microscopy or an x-ray diffraction method did not detect oxides in the coating layers produced by WS using a high nitrogen flow rate or by CS using helium, the inert gas fusion method revealed minor increases of oxygen content from 0.01 to 0.2?wt.%. Most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense. However, the cross-sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles.  相似文献   

6.
The microstructure of Ti-6Al-4V alloy manufactured by vacuum plasma spraying consists of individual lamellae, inter-lamellae boundaries, and porosity. Mechanical properties of the as-sprayed structure depend mainly upon the solidification behavior and resultant microstructure and morphology of the individual splats and cohesion between splats. Using a three-dimensional numerical model, the cooling rate and solidification behavior of a single Ti-6Al-4V droplet (50 μm) impacting on a titanium substrate under vacuum plasma spray conditions were investigated. Results were verified with experimental observations in single splats and as-sprayed microstructures obtained by vacuum plasma sprayed form of Ti-6Al-4V alloy. The average cooling rate of a single splat obtained from the numerical simulation was on the order of 108 °C/s and the solidification front velocity was approximately 63 cm/s which is in the range of the rapid solidification. The thickness of the splat was calculated to be around 3 μm and the deposition efficiency was approximately 70%. These results illustrated good agreements with those obtained from experiments.  相似文献   

7.
WC-Co coatings are primarily deposited using the high velocity oxy-fuel (HVOF) spray process. However, the decomposition and decarburization of carbides during spraying affects the wear performance and fracture toughness of the coatings. In this paper, a novel high pressure HVOF was developed to achieve lower particle temperature and higher particle velocity. It enables combustion chamber pressures up to 3.0 MPa. The influence of combustion chamber pressure and oxygen/fuel ratio on WC-Co particle velocity and temperature levels were analyzed by numerical simulation. The experimental results show that the combustion chamber pressure and the oxygen/fuel ratio have a significant influence on particle velocity and melting degree, as well as on the microstructure and microhardness of the coating. High velocity WC-Co particles in different states, i.e., molten, semi-molten, and non-molten can be readily obtained by changing the spraying conditions. A comparison to the conventional JP-5000 was also performed.  相似文献   

8.
Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.  相似文献   

9.
316L stainless steel powder was sprayed by a high-pressure high-velocity oxygen fuel (HVOF) process. Effects of powder size and the pressure in the combustion chamber on the velocity and temperature of sprayed particles were studied by using an optical instrument, first, at the substrate position. A strong negative correlation between the particle temperature and the diameter was found, whereas the correlation between the velocity and the diameter was not significant. The pressure in the combustion chamber affected the velocity of sprayed particles significantly, whereas the particle temperature remained largely unchanged. In-situ curvature measurement was employed in order to study the process of stress generation during HVOF spraying. From the measured curvature changes, the intensity of peening action and the resultant compressive stress by HVOF sprayed particles were found to increase with the kinetic energy of the sprayed particles. The results were further used to estimate the stress distribution within the coatings. X-ray stress measurement revealed that the residual stress on the surface of the HVOF coatings is low and often in tension, but the stress inside the coatings is in a high level of compression.  相似文献   

10.
Independent control of particle velocity and temperature in the HVOF process has been achieved in this research, allowing these variables to change by 170 m/s and 200 °C, respectively. The independence was achieved using a specially designed nozzle with multiple powder injection ports and by an inert diluent added to the oxygen stream feeding the combustion. Within the available range, notable changes in splat morphology, porosity, and coating oxidation of sprayed 316L stainless steel are readily apparent. Increased particle velocity generally correlates with improved splat deformation but has a weak effect on porosity and no effect on oxidation. Particle temperature, on the other hand, correlates strongly with highly deformed splats, porosity, and oxidation. In fact, highly dense coatings having little oxidation can be formed with relatively low velocity particles if the average particle temperature is kept in the vicinity of the material melting point. This result suggests that particle temperature control is the key to creating dense, low-oxide HVOF-sprayed corrosion-control coatings. Because commercial HVOF equipment currently lacks this capability, the research indicates a useful direction for future development.  相似文献   

11.
Polymer materials are increasingly dominating various engineering fields. Recently, polymer-based composite materials’ surface performances—in particular, surface in relative motion—have been improved markedly by thermal spray coating. Despite this recent progress, the deposition of high-strength materials—producing a coating thickness of the order of more than 500 μm—remains highly challenging. In the present work, a highly dense and thick titanium coating was successfully deposited onto the carbon fiber-reinforced plastic (CFRP) substrate using a newly developed high-pressure warm spray (WS) system. The coating properties, such as hardness (300 ± 20 HV) and adhesion strength (8.1 ± 0.5 MPa), were evaluated and correlated with the microstructures of the coating. In addition, a wipe-test and in situ particle velocity and temperature measurement were performed to validate the particle deposition behavior as a function of the nitrogen flow rate in the WS system. It was found that the microstructures, deposition efficiency, and mechanical properties of the coatings were highly sensitive to nitrogen flow rates. The coating porosity increased with increasing nitrogen flow rates; however, the highest density was observed for nitrogen flow rate of 1000 standard liters per minute (SLM) samples due to the high fraction of semi-molten particles in the spray stream.  相似文献   

12.
Thermal spray coatings are formed by successive impingements and interbonding materials among the splats, solidified individual molten particles. Depending on the processing conditions employed during the spray process, deposits are produced with an assortment of microstructures and properties. This study highlights how the coating oxidation differences are influenced by the mechanisms involved during the spray process. The commercial steel powder referenced Amdry XPT 512 is chosen for a systematic study of comparison across different spraying techniques. Steel particles were sprayed with a F4 plasma torch and with a shrouded plasma spray process used in order to protect particles against atmospheric oxidation. The plasma jet was successively shielding by an inert gas shroud and by an oxidizing gas shroud. In-flight oxidation and post impact oxidation present in coatings are discussed in detail and the effects of these mechanisms on coating properties are addressed. The comparison was made on in-flight particle characteristics and on coating properties in terms of oxide content and porosity level. Using shrouded gas, in-flight characteristics are quite similarly independent of the nature of the shrouded gas. This way, the comparison of oxide contents present in the coatings corresponds to in-flight oxidation and is completely dependent on the nature of the shrouded gas. Comparing these results to those obtained by APS, a decrease in both velocity and temperature of in-flight particles was observed leading also to a significant decrease in oxide contents and to a slight increase in porosity level compared to coatings sprayed with air shrouding.  相似文献   

13.
This study investigates the effect of propellant gas, helium, and nitrogen during cold spraying of titanium coatings. Coatings were characterized by SEM and were evaluated for their deposition efficiency (DE), microhardness, and porosity. In selected conditions, three particle velocities were investigated in which for each condition, the propelling gases?? temperature and pressure were attuned to attain similar particle velocities for each gas. Observations show that loosely bonded particles can be detached by high-pressure supersonic gas stream. Selected coatings were characterized by XPS to analyze the occurrence of oxidation and nitridation. Although generally accepted that coating characteristics can be affected by particle temperature, results show that for the same particle velocity, DE and coating density are also a function of substrate temperature. In addition, a thick and fully dense cold sprayed titanium coating was achieved with optimized spray parameters and nozzle using helium. The corresponding average particle velocity was 1173 m/s.  相似文献   

14.
The deposition of cold-sprayed titanium on various substrates is studied in this work. A rather coarse powder of titanium (−70 + 45 μm) was sprayed under uniform spraying conditions using a cold spray system onto five different substrates: two aluminum-based alloys (AISI 1050-H16 and AISI 2017-T4), copper, stainless steel AISI 304L, and Ti-6Al-4V. All the spraying experiments were carried out using alternatively nitrogen (N2) or helium (He) as the process gas. Thick coatings were formed on the various substrates, with the exception of the AISI 2017 substrate. When N2 was used as the process gas, only a few particles remained adhering to the AISI 2017. The thick pre-existing superficial oxide layer on AISI 2017, which was detected by Electron MicroProbe Analysis (EPMA), appeared to prevent adhesion of cold-sprayed titanium particles. The interaction of the sprayed particles with the various substrates was also studied by means of numerical simulations to better understand the adhesion mechanisms. The microstructure and the characteristics of the coatings were investigated. Deposition efficiency and coating density were found both to be strongly improved by spraying helium as the process gas.  相似文献   

15.
An analysis of the cold spray process and its coatings   总被引:9,自引:0,他引:9  
In this study, computational fluid dynamics (CFD) and extensive spray tests were performed for detailed analyses of the cold spray process. The modeling of the gas and particle flow field for different nozzle geometries and process parameters in correlation with the results of the experiments reveal that adhesion only occurs when the powder particles exceed a critical impact velocity that is specific to the spray material. For spherical copper powder with low oxygen content, the critical velocity was determined to be about 570 m/s. With nitrogen as the process gas and particle grain sizes from 5–25 μm, deposition efficiencies of more than 70% were achieved. The cold sprayed coatings show negligible porosity and oxygen contents comparable to the initial powder feedstock. Therefore, properties such as the electrical conductivity at room temperature correspond to those of the bulk material. The methods presented here can also be applied to develop strategies for cold spraying of other materials such as zinc, stainless steel, or nickel-based super-alloys.  相似文献   

16.
Micron-sized titanium particles were deposited on steel substrates by the warm spraying, which is a modified high velocity oxy-fuel (HVOF) spraying technique. In the process, nitrogen gas is mixed with the HVOF flame jet to lower the temperature of injected powder particles. Detailed observations of splats formed on polished substrates by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to investigate the effects of particle temperature on the bonding of splats with the substrate and the microstructure within the splats. At lower nitrogen flow rates, the particles observed were heavily deformed and exhibited diverse splat morphologies and microstructures. At higher nitrogen flow rates, most of the particles were impacted in the solid state and the oxidation of particles was remarkably less. The TEM observation revealed distinctively different microstructures within the splats as well as the splat/substrate interfaces depending on whether the particle was molten or solid before the impact.  相似文献   

17.
Cold spray is a complex process where many parameters have to be considered in order to achieve optimized material deposition and properties. In the cold spray process, deposition velocity influences the degree of material deformation and material adhesion. While most materials can be easily deposited at relatively low deposition velocity (<700 m/s), this is not the case for high yield strength materials like Ti and its alloys. In the present study, we evaluate the effects of deposition velocity, powder size, particle position in the gas jet, gas temperature, and substrate temperature on the adhesion strength of cold spayed Ti and Ti6Al4V splats. A micromechanical test technique was used to shear individual splats of Ti or Ti6Al4V and measure their adhesion strength. The splats were deposited onto Ti or Ti6Al4V substrates over a range of deposition conditions with either nitrogen or helium as the propelling gas. The splat adhesion testing coupled with microstructural characterization was used to define the strength, the type and the continuity of the bonded interface between splat and substrate material. The results demonstrated that optimization of spray conditions makes it possible to obtain splats with continuous bonding along the splat/substrate interface and measured adhesion strengths approaching the shear strength of bulk material. The parameters shown to improve the splat adhesion included the increase of the splat deposition velocity well above the critical deposition velocity of the tested material, increase in the temperature of both powder and the substrate material, decrease in the powder size, and optimization of the flow dynamics for the cold spray gun nozzle. Through comparisons to the literature, the adhesion strength of Ti splats measured with the splat adhesion technique correlated well with the cohesion strength of Ti coatings deposited under similar conditions and measured with tubular coating tensile (TCT) test.  相似文献   

18.
Achieving a plasma sprayed cast iron coating containing graphite requires stringent control on spray parameters that synergistically influence the coating properties and thus the performance. The microstructure of cast iron splats greatly depends on spray parameters such as substrate temperature, chamber pressure, and spray distance. This paper presents the effect of chamber pressure on the splat microstructure, including oxides and graphite. At low chamber pressures, most splats exhibit a disk shape with high flattening ratios, whereas star-shaped splats extensively appear at high chamber pressures. Spraying at high chamber pressures causes the formation of pores and thick oxide zones at the splat/substrate interface, mainly due to the atmospheric gases, which are responsible for a decrease in splat adhesion. Spraying in Ar atmosphere reduces the splat oxidation due to a decrease in the oxygen partial pressure. Small deformed substrate ridges are observed adjacent to the periphery of splats sprayed at low chamber pressures whereas no ridges are detected at high chamber pressures. Ridge formation generates a kind of mechanical bond, which increases the adhesive strength. Since the molten droplets impinge with high velocity and thus high flattening ratio at low chamber pressures, the solidification rate becomes faster, and graphite formation is resultantly hindered.  相似文献   

19.
In thermal spray processes, it is demonstrated that substrate shape and location have significant effects on particle in-flight behavior and coatings quality. In the present work, the suspension high-velocity oxygen fuel (HVOF) spraying process is modeled using a three-dimensional two-way coupled Eulerian–Lagrangian approach. Flat and cylindrical substrates are placed at different standoff distances, and particles characteristics near the substrates and upon impact are studied. Suspension is a mixture of ethanol, ethylene glycol, and mullite solid powder (3Al2O3·2SiO2) in this study. Suspension droplets with predefined size distribution are injected into the combustion chamber, and the droplet breakup phenomenon is simulated using Taylor analogy breakup model. Furthermore, the eddy dissipation model is used to model the premixed combustion of oxygen–propylene, and non-premixed combustion of oxygen–ethanol and oxygen–ethylene glycol. To simulate the gas phase turbulence, the realizable k–ε model is applied. In addition, as soon as the breakup and combustion phenomena are completed, the solid/molten mullite particles are tracked through the domain. It is shown that as the standoff distance increases the particle temperature and velocity decrease and the particle trajectory deviation becomes more significant. The effect of stagnation region on the particle velocity and temperature is also discussed in detail. The catch rate, which is defined as the ratio of the mass of landed particles to injected particles, is calculated for different substrate shapes and standoff distances in this study. The numerical results presented here is consistent with the experimental data in the literature for the same operating conditions.  相似文献   

20.
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface (R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness (R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties (H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号