首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are still concerns in the scientific community about the stability of nanostructured YSZ coatings at high temperatures. Questions have been raised about the possibility of accelerated sintering of these ultrafine materials and the associated changes in properties that could accompany this sintering. In this work, nanostructured YSZ coatings were engineered to counteract sintering effects by tailoring the coatings to exhibit a bimodal microstructure formed by (i) a matrix of dense YSZ zones (produced from molten YSZ particles) and (ii) large porous nanostructured YSZ zones (produced from semimolten nanostructured YSZ particles) that were embedded in the coating microstructure during thermal spraying. These coatings were subjected to heat treatment in air at 1400 °C for 1, 5, and 20 h. The superior driving force for sintering exhibited by the porous nanozones, when compared to that of the dense zones, caused the nanozones to shrink at much faster rates than those exhibited by the denser matrix zones (i.e., differential sintering), thereby creating a significant network of voids in the coating microstructure. Due to these effects, after 20 h exposure at 1400 °C, the thermal conductivity and elastic modulus values of the conventional coatings were approximately two times higher than those of the nanostructured ones.  相似文献   

2.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry   总被引:2,自引:0,他引:2  
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.  相似文献   

3.
Plasma- sprayed coatings produced with two zirconia powders (− 90 + 10 μm, spray dried and partially sintered) that were stabilized (9 wt %) with dysprosia (DSZ) and ytterbia (YbSZ) were compared to coat-ings sprayed with a yttria (7 wt %) stabilized zirconia (YSZ) powder (45 + 22 μm, fused and crushed). The YSZ particles in the coating were almost fully molten (less than 0.2 % monoclinic m- phase), with excellent contact between the layered splats (adhesion of 54 MPa). The DSZ particles were only partially melted (3.1 % m- phase), with coating adhesion greater than 34 MPa; the YbSZ particles were less melted (6.1 % m- phase), with coating adhesion of 27 MPa. The thermal properties (diffusivity, a; specific heat, cp; and thermal conductivity, κ) of the coatings were about the same. Under thermal cycling (1 h heating at 1100 °C in a furnace followed by fast cooling for approximately 3 min by air jets) of the coatings sprayed on FeCrAl alloy manufactured by powder metallurgy, the behavior of the DSZ coating was simi-lar to that of the YSZ, whereas the YbSZ coating was partially detached. However, in all cases the percent-age of the monoclinic phase decreased and the ratio of the hexagonal structure increased to 1.013 of the nontransformable tetragonal phase t′.  相似文献   

4.
A variety of yttria-stabilized zirconia (YSZ) coatings have been attained by plasma spray physical vapor deposition (PS-PVD) with fine YSZ powders at high power. The coating structures were found to change significantly with the powder feeding rates but less with the substrate temperature and the rate of the substrate rotation, and a porous feather like structure was attained at 500 Torr (666.6 millibar) and a rate of >200 μm/min. Such a coating produces porosity reaching >50%, thermal conductivity as small as 0.5 W/mK and lower infra-red transmittance compared to the sprayed splat coating with identical thickness.  相似文献   

5.
Plasma-sprayed YSZ coatings, serving as the thermal insulating top coating for thermal barrier coatings, involve thermally activated microstructural evolution, which may change the physical and mechanical properties and thereby influence the thermal barrier performance and service lifetime. In this study, 8YSZ and 20YSZ coatings annealed at 1300 °C were comparatively investigated to understand the effects of phase structure on the sintering behavior. Results show that, compared with the 20YSZ coating consisting of mainly thermodynamically stable cubic phase, the as-sprayed 8YSZ coating presented a multiphase structure mainly composed of thermodynamically metastable tetragonal phase, and significant phase transformation occurred during high-temperature exposure. The lamellar bonding had significantly improved because of the healing of intersplat pores. Fracture toughness, microhardness, and elastic modulus increased with sintering duration. The 8YSZ coating exhibiting the thermodynamically metastable tetragonal phase structure experienced a slower sintering kinetics than the 20YSZ coatings consisting mainly of thermodynamically stable cubic phase.  相似文献   

6.
The thermal durability of thermal barrier coatings (TBCs) obtained using feedstock powders with different purity and phase content was investigated by cyclic thermal testing, including the effects on the sintering and phase transformation behaviors. Three kinds of 8 wt.% yttria-stabilized zirconia, namely regular purity (8YSZ), high purity (HP), and no monoclinic phase (nMP), were employed to prepare top coats by atmospheric plasma spraying on a NiCoCrAlY bond coat using a high-velocity oxy-fuel system. Use of 8YSZ, HP, and nMP for plasma spraying affected the microstructure and lifetime of the TBC in furnace cyclic testing (FCT) at 1100 °C and the sintering rate during annealing at 1400 °C for 50, 100, 200, and 400 h. In FCT, the TBC formed from nMP showed the longest durability, while that formed from HP showed lifetime performance similar to that obtained with regular-purity 8YSZ. The TBC obtained with nMP also exhibited the lowest monoclinic phase transition rate, followed by those obtained using HP and 8YSZ.  相似文献   

7.
Yttria-stabilized zirconia (YSZ) based composite coatings with the addition of LaMgAl11O19 (LaMA) as the secondary phase, were prepared by air plasma spraying in order to improve the performances of the traditional YSZ coating. Results indicate that the newly developed composite coating shows increased vertical crack density with the enhancement of the LaMA content during thermal cycling process, which results in increased strain tolerance and service lifetime. However, such composite coatings about 200 ??m thick, exhibit inferior thermal cycling lifetimes with respect to the typical YSZ coating for surface temperatures above 1400 °C. The presence of amorphous LaMA phase in the composite coating results in increased thermal conductivity and a relative thin top coat leading to a reduced thermal insulation efficiency. These are believed to be responsible for the premature degradation of bond coat and final top coat spallation failure. Such an investigation gives useful guidelines to develop advanced composite coatings based on YSZ/LaMA systems.  相似文献   

8.
新型锆酸盐基热障涂层材料的研究进展   总被引:1,自引:0,他引:1  
简要回顾了传统7±1 %Y_2O_3稳定的ZrO_2(YSZ)热障涂层的研究现状,指出YSZ涂层在高温热循环下存在着相变,抗烧结能力差等缺点.鉴于新型稀土锆酸盐系列由于具有热导率低、抗烧结能力强等优点而被认为有望作为新一代热障涂层候选材料,重点概述了目前国内外在这种热障涂层材料的陶瓷块体制备及涂层材料方面的研究现状,并进一步探讨了未来新型稀土锆酸盐基热障涂层的发展方向.  相似文献   

9.
利用自行研制的La1.4Nd0.6Zr2O7(LNZ)喷涂粉末,采用大气等离子喷涂在Mo基体上制备LNZ热障涂层.测试粉末的各项热物理性能,考核涂层的抗热震性能和高温隔热性能,并与常规氧化钇稳定氧化锆(YSZ)涂层进行比较.结果表明,与YSZ相比,LNZ由于具有热膨胀系数小、导热系数低、烧结速率低等特点而更适合在Mo基体作为热障涂层使用.  相似文献   

10.
The primary function of thermal barrier coatings (TBCs) is to insulate the underlying metal from high temperature gases in gas turbine engines. As a consequence, low thermal conductivity and high durability are the primary properties of interest. In this work, the solution precursor plasma spray (SPPS) process was used to create layered porosity, called inter-pass boundaries, in yttria-stabilized zirconia (YSZ) TBCs. IPBs have been shown to be effective in reducing thermal conductivity. Optimization of the IPB microstructure by the SPPS process produced YSZ TBCs with a thermal conductivity of 0.6 W/mK, an approximately 50% reduction compared to standard air plasma sprayed (APS) coatings. In preliminary tests, SPPS YSZ with IPBs exhibited equal or greater furnace thermal cycles and erosion resistance compared to regular SPPS and commercially made APS YSZ TBCs.  相似文献   

11.
Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of ~1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.  相似文献   

12.
Strontium zirconate (SrZrO3) thermal barrier coatings were deposited by solution precursor plasma spray (SPPS) using an aqueous precursor solution. The phase transition of the SrZrO3 coating and the influence of the aging time at 1400 °C on the microstructure, phase stability, thermal expansion coefficient, and thermal conductivity of the coating were investigated. The unique features of SPPS coatings, such as interpass boundary (IPB) structures, nano- and micrometer porosity, and through-thickness vertical cracks, were clearly observed evidently in the coatings. The vertical cracks of the coatings remained substantially unchanged while the IPB structures gradually diminished with prolonged heat treatment time. t-ZrO2 developed in the coatings transformed completely to m-ZrO2 phase after heat treatment for 100 h. Meanwhile, the SrZrO3 phase in the coatings exhibited good phase stability upon heat treatment. Three phase transitions in the SrZrO3 coatings were revealed by thermal expansion measurements. The thermal conductivity of the as-sprayed SrZrO3 coating was ~1.25 W m?1 K?1 at 1000 °C and remained stable after heat treatment at 1400 °C for 360 h, revealing good sintering resistance.  相似文献   

13.
热障涂层失效机理、改进方法及未来发展方向   总被引:1,自引:0,他引:1  
热障涂层(Thermal Barrier Coatings,TBCs)是用于航空发动机及燃气轮机的一种高效功能性隔热涂层,常用材料为氧化钇(质量分数6%~8%)部分稳定氧化锆(YSZ).首先,从TGO生长、高温烧结、CMAS腐蚀、盐雾腐蚀和热膨胀失配等方面介绍了YSZ的失效机理,以上因素会从不同程度上造成涂层分层、开裂乃至失效.其次,介绍了通过控制界面反应速度和元素扩散速度,改变涂层化学成分及结构等方法,改善YSZ性能.为适应下一代超高温热障涂层的发展要求,近年来,国内外针对制备工艺的改善和新材料性能进行了研究.通过调控等离子物理气相沉积的喷距,能得到不同微观结构的热障涂层,运用纳米粉体再造粒技术,能制备出抗热震性能、耐磨抗腐蚀性、韧性以及可加工性更为优异的纳米结构涂层.ABO3型钙钛矿结构钡盐、钽酸盐、石榴石结构稀土铝酸盐、磁铅石结构稀土铝酸盐、独居石结构稀土磷酸盐等新型陶瓷层材料的研究是一大热点.与传统YSZ相比,新陶瓷层材料有优异的高温相稳定性、高热膨胀系数、高热导率等性能,但存在断裂韧性低、组分复杂等缺点.最后,为热障涂层未来研究指出了方向,并展望了其面临的挑战.  相似文献   

14.
Studies on plasma spraying of zircon (ZrSiO4) have been carried out by the authors as one of the candidates for an environmental barrier coating (EBC) application, and had reported that substrate temperature is one of the most important factors to obtain crack-free and highly adhesive coating. In this study, several amounts of yttria were added to zircon powder, and the effect of the yttria addition on the structure and properties of the coatings were evaluated to improve the stability of the zircon coating structure at elevated temperature. The coatings obtained were composed of yttria-stabilized zirconia (YSZ), glassy silica, whereas the one prepared from monolithic zircon powder was composed of the metastable high temperature tetragonal phase of zirconia and glassy silica. After the heat treatment over 1200 °C, silica and zirconia formed zircon in all coatings. However, coatings with higher amounts of yttria exhibited lower amounts of zircon. This resulted in the less open porosity of the coating at elevated temperature. These yttria-added coatings also showed good adhesion even after the heat treatment, while monolithic zircon coating pealed off.  相似文献   

15.
Gd2 O3 -Yb2 O3 -Y2 O3 -ZrO2 热障涂层材料的热物理性能   总被引:5,自引:2,他引:3  
李嘉  谢铮  何箐  邹晗  吕玉芬 《表面技术》2015,44(9):18-22,42
目的通过多元稀土氧化物掺杂改性YSZ,提高传统热障涂层的性能。方法使用化学共沉淀法制备不同掺杂量的Gd2O3-Yb2O3-Y2O3-Zr O2(GYYZO)材料,并分别使用冷等静压-烧结和等离子喷涂工艺制备块材和涂层。通过测试块材的热导率和热膨胀系数,分析评价材料的热物理性能。对高温退火处理后的涂层进行X射线衍射分析,评价不同成分涂层的高温相稳定性。结果氧化锆基材料的热导率和热膨胀系数随总掺杂量升高而降低。氧化锆中稀土氧化物总掺杂量为5.5%~9.84%(摩尔分数)时,在1000℃下的热导率为1.25~1.56 W/(m·K),相对8YSZ材料下降了22%~37.5%;在200~1300℃的热膨胀系数为(10~11.1)×10-6/K,与传统8YSZ材料相当。在1400℃长时间退火处理后,低掺杂量GYYZO涂层中的单斜相含量明显低于8YSZ涂层。结论多元稀土氧化物掺杂改性氧化锆材料具有良好的高温相稳定性、低热导率和适当的热膨胀系数,可以作为高性能热障涂层的备选材料。  相似文献   

16.
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m?1 K?1 for EB-PVD YSZ coatings to about 0.7 W m?1 K?1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ′-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.  相似文献   

17.
7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.  相似文献   

18.
The thermal durability of thermal barrier coating systems (TBCs) obtained using feedstock powders with different purity and phase content was investigated by thermal shock testing with different cycle times, including the effects on the sintering and phase transformation behaviors. Four 8 wt.% yttria-stabilized zirconia powders, with regular purity (TC1), high purity (TC2 and TC3), and without monoclinic phase (TC4), were employed to prepare the topcoat of TBC by atmospheric plasma spray on a NiCoCrAlY bondcoat deposited by high velocity oxy-fuel. The microstructure and phase stability of the topcoats affected the TBCs’ lifetime in the short-term (1 h) and long-term (24 h) furnace cyclic test (FCT) at 1100 °C and jet engine thermal shock (JETS) test. In the short-term FCT and JETS tests, in which coatings are severely subjected to thermal stress, the TBCs’ lifetime is most affected by the microstructure of the topcoat. The coating layer with the lowest monoclinic phase in the as-sprayed state showed the lowest phase-transformation characteristics in the isothermal oxidation test (1400 °C). These properties resulted in the best lifetime in the long-term FCT. Therefore, the coating material and evaluating methods of TBCs’ life should be selected depending on the usage environment.  相似文献   

19.
The rare earth zirconates have attracted interest for thermal barrier coatings (TBCs) because they have very low intrinsic thermal conductivities, are stable above 1200 °C and are more resistant to sintering than yttria-stabilized zirconia (YSZ). Samarium zirconate (SZO) has the lowest thermal conductivity of the rare earth zirconates and its pyrochore structure is stable to 2200 °C but little is known about its response to thermal cycling. Here, columnar morphology SZO coatings have been deposited on bond coated superalloy substrates using a directed vapor deposition method that facilitated the incorporation of pore volume fractions of 25 to 45%. The as-deposited coatings had a fluorite structure which transformed to the pyrochlore phase upon thermal cycling between 100 and 1100 °C. This cycling eventually led to delamination of the coatings, with failure occurring at the interface between the TGO and a “mixed zone” that formed between the thermally grown alumina oxide (TGO) and the SZO. While the delamination lifetime increased with coating porosity (reduction in coating modulus), it was significantly less than that of similar YSZ coatings applied to the same substrates. The reduced life resulted from a reaction between the rare earth zirconate and the alumina-rich bond coat TGO, leading to the formation of a mixed zone consisting of SZO and SmAlO3. Thermal strain energy calculations show that the delamination driving force increases with TGO and mixed layer thicknesses and with coating modulus. The placement of a 10 μm thick YSZ layer between the TGO and SZO layers eliminated the mixed zone and restored the thermal cyclic life to that of YSZ structures.  相似文献   

20.
The occurrence of monoclinic zirconia phase has an important impact on the performance of thermal barrier coatings (TBC) of yttria-stabilized zirconia (YSZ). Therefore, a reliable method is needed to detect its contents and to investigate also its spatial distribution within the parent microstructure. This was the motivation to apply cathodoluminescence (CL) spectroscopy. YSZ coatings with different porosities were manufactured by atmospheric plasma spraying. CL analysis yielded monoclinic phase contents of 5.2 ± 1.6% for the high-porous sample and 3.4 ± 0.5% for the low-porous sample. The results were qualitatively confirmed by x-ray diffraction (XRD). However, due to its lower detection sensitivity the XRD results are quantitatively on lower level. Owing to its synthesis method, the applied powder feedstock showed a considerable content of monoclinic phase. The lower the particle temperatures were the larger fraction of monoclinic phase remained untransformed. This has to be considered when spraying high-porous TBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号