首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ssu-yuan Hu  Jung-ho Cheng   《Renewable Energy》2007,32(11):1934-1947
This paper presents a simple method for determination of pairing between sites and wind generators. It requires six parameters to describe the matching between turbine models and site characteristics, and the energy output performance can thus be easily estimated and used as the index of pairing effectiveness. To describe a Weibull model of wind speed distribution, the shape parameter and the scale parameter are necessarily required. Besides, four other parameters are chosen to specify the characteristics of the power curve of a wind generator: the cut-in speed, the rated speed, the cut-off speed and the nominal power. By combining these six parameters, the average power output of some particular wind turbine at a specific site can be practically and quickly approximated as a reference for turbine siting consideration. An example is also shown to demonstrate the utilization of the proposed method to choose between a group of wind sites and a list of commercial wind turbines.  相似文献   

2.
The capacity factor is an important wind turbine parameter which is ratio of average output electrical power to rated electrical power of the wind turbine. Another main factor, the AEP, the annual energy production, can be determined using wind characteristics and wind turbine performance. Lower rated power may lead to higher capacity factor but will reduce the AEP. Therefore, it is important to consider simultaneously both the capacity factor and the AEP in design or selecting a wind turbine. In this work, a new semi-empirical secondary capacity factor is introduced for determining a rated wind speed at which yearly energy and hydrogen production obtain a maximum value. This capacity factor is expressed as ratio of the AEP for wind turbine to yearly wind energy delivered by mean wind speed at the rotor swept area. The methodology is demonstrated using the empirical efficiency curve of Vestas-80 2 MW turbine and the Weibull probability density function. Simultaneous use of the primary and the secondary capacity factors are discussed for maximizing electrical energy and hence hydrogen production for different wind classes and economic feasibility are scrutinized in several wind stations in Kuwait.  相似文献   

3.
H. Li  Z. Chen 《Renewable Energy》2009,34(4):1175-1184
This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM generator systems, the combinations of five rated rotor speeds in the range of 10–30 rpm and nine power ratings from 100 kW to 10 MW, are optimally designed, respectively. The optimum results are compared graphically in terms of the generator design indexes. Next, according to the design principle of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind generator systems is evaluated at eight potential sites with annual mean wind speeds in the range of 3–10 m/s, respectively. These results have shown the suitable designs for the optimum site matching of the investigated PM generator systems.  相似文献   

4.
A simple nomogram is constructed to estimate the power generated by a wind turbine generator (WTG) operated at near maximum efficiency using optimum tip-speed ratio between cut-in and rated wind speed, and at constant power using optimum pitch control between rated and cut-out wind speed. The nomogram is based on information that is readily available for commercial WTGs as well as some simple statistical quantities for the wind at the site. When the wind speed is described by a Weibull distribution, the power of a WTG is estimated in terms of three generalized non-dimensional parameters. When a Rayleigh distribution is employed only two parameters are necessary. A second nomogram is also developed for those less common cases where a small correction of the results of the first nomogram is needed. A mathematical analysis is presented which allows for the construction of single chart nomograms without sacrificing the necessary accuracy. Two application examples demonstrate the degree of accuracy achieved by the nomograms and the advantages they offer for parametric analyses as regards convenience and labor.  相似文献   

5.
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.  相似文献   

6.
Optimum siting of wind turbine generators   总被引:3,自引:0,他引:3  
This paper investigates optimum siting of wind turbine generators from the viewpoint of site and wind turbine generator selection. The methodology of analysis is based on the accurate assessment of wind power potential of various sites. The analytical computations of annual and monthly capacity factors are done using the Weibull statistical model using cubic mean cube root of wind speeds. As many as fifty-four potential wind sites, with and without wind turbine installations, geographically distributed in different states of India are used for the siting analysis. As an outcome of this analysis several definitive conclusions of archival nature have been arrived at and are presented in the paper. If this analysis is done at the planning and development stages of installation of wind power stations, it will enable the wind power developer or the power utilities to make a judicious choice of potential site and wind turbine generator system from the available potential sites and wind turbine generators respectively  相似文献   

7.
The electrical energy production and reliability benefits of a wind energy conversion system (WECS) at a specific site depend on many factors, including the statistical characteristics of the site wind speed and the design characteristics of the wind turbine generator (WTG) itself, particularly the cut-in, rated and cut-out wind speed parameters. In general, the higher the degree of the wind site matching with a WECS is, the more are the energy and reliability benefits. An electrical energy production and reliability benefit index designated as the Equivalent Capacity Ratio (ECR) is introduced in this paper. This index can be used to indicate the electrical energy production, the annual equivalent utilization time and the credit of a WECS, and quantify the degree of wind site matching with a WECS. The equivalent capacity of a WECS is modeled as the expected value of the power output random variable with the probability density function of the site wind speed. The analytical formulation of the ECR is based on a mathematical derivation with high accuracy. Twelve WTG types and two test systems are used to demonstrate the effectiveness of the proposed model. The results show that the ECR provides a useful index for a WTG to evaluate the energy production and the relative reliability performance in a power system, and can be used to assist in the determination of the optimal WTG type for a specific wind site.  相似文献   

8.
This paper presents a new formulation for the turbine-site matching problem, based on wind speed characteristics at any site, the power performance curve parameters of any pitch-regulated wind turbine, as well as turbine size and tower height. Wind speed at any site is characterized by the 2-parameter Weibull distribution function and the value of ground friction coefficient (α). The power performance curve is characterized by the cut-in, rated, and cut-out speeds and the rated power. The new Turbine-Site Matching Index (TSMI) is derived based on a generic formulation for Capacity Factor (CF), which includes the effect of turbine tower height (h). Using the CF as a basis for turbine-site matching produces results that are biased towards higher towers with no considerations for the associated costs. The proposed TSMI includes the effects of turbine size and tower height on the Initial Capital Cost (ICC) of wind turbines. The effectiveness and the applicability of the proposed TSMI are illustrated using five case studies. In general, for each turbine, there exists an optimal tower height, at which the value of the TSMI is at its maximum. The results reveal that higher tower heights are not always desirable for optimality.  相似文献   

9.
This paper illustrates a simple method for evaluating the energy output of windgenerators of known main characteristics in a site of known wind typology. The method is based on the matching of a model of the WECS with the Weibull model of wind regime. To enter the method the following quantities must be known: Weibull shape parameter and mean wind speed, turbine diameter, hub height, cut-in and nominal wind speeds and nominal power. With these quantities one can enter a diagram that gives the value of the plant utilisation factor for any specific siting. An example shows how to make a choice among several models of small size.  相似文献   

10.
The control problem of a wind turbine involves the determination of rotor speed and tip-speed ratio to maximize power and energy capture from the wind. The problem can be formulated as a nonlinear programming problem with the annual energy generation as the objective function. The wind speed distribution is modeled as the Weibull distribution. The Weibull shape and scale parameters are assigned to be stochastic in response to limited wind data and variability nature of the wind. It is proposed to apply particle swarm optimization to solve for optimum rotor speed under fixed-speed operation and optimum tip-speed ratio under variable-speed operation. The optimum rotor speed varies with the wind speed distribution, while the optimum tip-speed ratio does not depend on the wind speed distribution. It can be concluded from the simulation results that both the wind power and energy are more dependent of the Weibull scale parameter than the Weibull shape parameter. This implies that the wind power and energy are more dependent of the mean wind speed than the speed distribution.  相似文献   

11.
The investment decision on generation capacity of a wind park is difficult when wind studies or data are neither available nor sufficient to provide adequate information for developing a wind power project. Although new measurement is possible but it is definitely time consuming. To determine the optimum capacity, decision analysis techniques are proposed in this paper to cope with uncertainties arising from wind speed distribution and power–speed characteristics. The wind speed distribution is modeled from the measured data, the Rayleigh distribution, and the Weibull distribution. The power–speed curve of a wind turbine from cut-in speed to rated speed is modeled by using linear, parabolic, cubic, and quadratic characteristics. The optimization model is formulated as a mixed-integer nonlinear programming problem. The constraints are considered as interval bounds so that a set of feasible solutions is obtained. The optimum solution can be determined by using the profit-to-cost and profit-to-area ratios as performance metrics of investment. Decision analysis rules are then applied to overcome the uncertainty problem and to refine the investment plan. The proposed procedure has been tested with the wind power project of the Electricity Generating Authority of Thailand.  相似文献   

12.
This paper proposes a comprehensive MPPT method by which extraction of maximum power from wind turbine and its subsequent transfer through various power stages and final delivery to the connected grid are realized. In the proposed system, the operation of the wind turbine at its maximum efficiency point is maintained by control of grid‐tied inverter such that the shaft speed of the generator is set to result the desired optimum tip speed ratio of the turbine. The proposed comprehensive MPPT estimates the required DC link voltage for each wind speed using a unified system model, uses a loss factor to account for the system losses, and then controls the inverter to push the WT extracted maximum power into the grid. The comprehensive MPPT is developed and is validated in MATLAB/Simulink platform in a wide range of operating wind speed. The results ascertain that the wind turbine is made to operate at its maximum efficiency point for all wind speeds below the rated one.  相似文献   

13.
小型风力发电机组优化控制策略与实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出一种小型风力发电机组功率的优化控制策略.根据选定的300 W/24 V永磁发电机,使用Wilson叶片设计计算模型,应用MATLAB语言设计了300 W风机叶片;并针对现有风机控制系统中将控制器的设计与叶片、电机的匹配特性彼此孤立、分离的现象,设计出与风力发电机的电机、叶片相互匹配的控制器.在风洞试验中测试了样机在8、10 、12 、15 m/s等风速一定条件下,功率随系统电压的变化规律,当降低系统电压时,风机输出功率会一直下降,在此过程中并没有出现功率增加的现象,也就充分证明了工作在峰前区域的风力发电机,当风速大于额定风速时,控制系统可以通过减小接入系统的负载电阻值来控制其功率.这对研究小型风力发电系统的可控性、可靠性和耐久性有一定的指导意义和实用价值.  相似文献   

14.
M. EL-Shimy 《Renewable Energy》2010,35(8):1870-1878
During the last few years, Egypt has emerged as the leader of wind power in the Middle East and Africa. In the Gulf of Suez region, a continuously expanding large-scale grid-connected wind farm is available at Zafarana site. The Gulf of EL-Zayt site in the Gulf of Suez region is now under extensive studies related to wind power projects such as feasibility and bird migration studies. Therefore, the Gulf of Suez region is considered in this paper for optimal site matching of wind turbine generator (WTG). This paper treats the problem of site matching of WTG through improved formulation of the capacity factor. Such factor is estimated based on Weibull PDF and an accurate model for the WTG output-power-curve. Ornithological, martial, and other limitations placed on WTG hub heights in the Gulf of Suez region in Egypt are taken into account. In addition, a MATLAB based program is created to implement the presented technique of optimal site matching of WTG. Based on turbine-performance-index (TPI) maximization, optimal output-power-curve and optimal commercial WTG are determined for each candidate site in the Gulf of Suez region. Long-term performance measurements at Zafarana wind farms in comparison with the results are used to validate the presented technique and the optimality of the results.  相似文献   

15.
This paper discusses the potential for electricity generation on Hong Kong islands through an analysis of the local weather data and typical wind turbine characteristics. An optimum wind speed, uop, is proposed to choose an optimal type of wind turbine for different weather conditions. A simulation model has been established to describe the characteristics of a particular wind turbine. A case study investigation allows wind speed and wind power density to be obtained using different hub heights, and the annual power generated by the wind turbine to be simulated. The wind turbine's capacity factor, being the ratio of actual annual power generation to the rated annual power generation, is shown to be 0.353, with the capacity factor in October as high as 0.50. The simulation shows the potential for wind power generation on the islands surrounding Hong Kong.  相似文献   

16.
风电机组可靠性建模和动态过程分析   总被引:4,自引:1,他引:3  
在重点分析双馈感应发电机工作特性的基础上,建立了风电机组可靠性模型,同时对风电机组整个动态过程进行了分析.仿真结果表明风电机组获得最优能量的同时在低风速、额定风速、高风速都具有很好的工作性能.  相似文献   

17.
A power curve conventionally represents the relationship between hub height wind speed and wind turbine power output. Power curves facilitate the prediction of power production at a site and are also useful in identifying the significant changes in turbine performance which can be vital for condition monitoring. However, their accuracy is significantly influenced by changes in air density, mainly when the turbine is operating below rated power. A Gaussian process (GP) is a nonparametric machine learning approach useful for power curve fitting. Critical analysis of temperature correction is essential for improving the accuracy of wind turbine power curves. The conventional approach is to correct the data for air density before it is binned to provide a power curve, as described in the IEC standard. In this paper, four different possible approaches of air density correction and its effect on GP power curve fitting model accuracy are explored to identify whether the traditional IEC approach used for air density correction is most effective when estimating power curves using a GP. Finding the most accurate air density compensation approach is necessary to minimize GP model uncertainty.  相似文献   

18.
风力发电机组的主要部分由风力机和发电机所组成。为了尽可能的尊重实际风力机的物理特性及其运行的物理过程,需要分清控制对象并将风力机与发电机相分离,对其进行独立研究。并通过分析风力发电机组的额定工作点,将额定风速以上的桨叶节距角控制转化为风力机额定转速以上的桨叶节距角控制,最终经实验证实仿真方法实用性与正确性。  相似文献   

19.
In the present work, a tool is proposed for the evaluation of micro-wind turbine performances in the Australian cities. The power curves provided by the manufacturers were combined with the two-parameter Weibull function representative of the local wind conditions. Calculations demonstrate that when taking into account the only wind speed magnitude, the horizontal axis micro-wind turbines have greater capacity factors than the vertical axis micro-wind turbines for similar wind conditions. Turbine capacities were then mapped over a wide range of wind conditions assuming the wind distribution characterised by Weibull parameters. By considering the market price of electricity, the income of a power source can be evaluated. The critical wind-condition boundary needed to provide a beneficial active micro-wind turbine was determined for one horizontal axis micro-wind turbine using a hypothetical income map.  相似文献   

20.
A technical and economic assessment has been made of the generation of electricity using wind turbines at one of the most promising wind sites in Egypt: Hurghada. In this paper, we used wind data recorded over 23 years for this site. The WASP program was used to calculate the values of wind speed frequency for the station, their seasonally values have been estimated and compared with measured data.Weibull parameters and the power law coefficient (n) for all seasons at different heights (10–70 m) has been estimated and used to describe the distribution and behavior of seasonal wind speed and their frequencies at Hurghada. The monthly and annual values of wind potential at a height of 70 m were obtained by extrapolation of the 10 m data from the results of our previous article [Ahmed Shata AS, Hanitsch R. The potential of electricity generation on the east coast of Red Sea in Egypt. Renew Energy 2006;31:1597–615] using the power law.Also, the monthly plant load factor (PLF) has been estimated, which is used to determine the expected annual energy output of a wind energy conversion system (WECS).Variation of annual capacity factor with rated wind speed for 10 different wind turbines has been studied. The lower the rated speed for the WECS of the same height, the higher will be the capacity factor values. The expected electrical energy cost of kWh produced by the wind turbine (Repower MM82) with a capacity of 2 MW considered for Hurghada station was found to be less than 1.5 € cent/kWh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号