首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

2.
Simultaneous recordings were obtained from the primary and secondary somatosensory cortical areas (SI and SII) in cats anesthetized with ketamine or pentobarbital. A total of 40 individual neurons were studied (29 in SII and 11 in SI) before, during, and following injections of microliter quantities of lidocaine hydrochloride in the other ipsilateral cortical area. Activity in the cortex injected with the local anesthetic was monitored with single-neuron, multi-neuron, or evoked potential responses to determine the time course of inactivation within 0.5-2 mm of the injection sites. Recording sites in both cortical locations were in the representations of the distal forelimb. Responses were elicited by transcutaneous electrical stimulation across the receptive fields with needle electrodes. Short-latency responses were synchronously activated, and, in those circumstances where single neurons were isolated in both areas, no overall differences in latency were noted. Anesthetization of either cortical area never blocked access of somatosensory information to the intact area, even when the injected cortex was completely silenced in the vicinity of the injection mass. In 15 SII neurons and 7 SI neurons, changes were seen in short-latency evoked responses to stimulation of their receptive fields or in background activity following local anesthesia of the other area through several cycles of injection and recovery. In 7 of these 15 SII cells, changes were noted in the timing and/or firing rates of the short-latency responses; changes were noted in the short-latency responses of 2 of these 7 SI cells while SII was silenced. In 11 SII and 6 SI cells, “background” activity that was recorded during the interstimulus intervals either increased (most cases) or decreased during local anesthesia of the other area. The results are discussed in reference to the hypothesis that primary sensory cortical areas feed information forward to secondary areas, and these feed back modulatory controls to the primary regions.  相似文献   

3.
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to investigate mechanisms of brain functions and plasticity, but also as a promising new therapeutic tool. The effects of rTMS depend on the intensity and frequency of stimulation and consist of changes of cortical excitability, which often persists several minutes after termination of rTMS. While these findings imply that cortical processing can be altered by applying current pulses from outside the brain, little is known about how rTMS persistently affects learning and perception. Here we demonstrate in humans, through a combination of psychophysical assessment of two-point discrimination thresholds and functional magnetic resonance imaging (fMRI), that brief periods of 5 Hz rTMS evoke lasting perceptual and cortical changes. rTMS was applied over the cortical representation of the right index finger of primary somatosensory cortex, resulting in a lowering of discrimination thresholds of the right index finger. fMRI revealed an enlargement of the right index finger representation in primary somatosensory cortex that was linearly correlated with the individual rTMS-induced perceptual improvement indicative of a close link between cortical and perceptual changes. The results demonstrate that repetitive, unattended stimulation from outside the brain, combined with a lack of behavioral information, are effective in driving persistent improvement of the perception of touch. The underlying properties and processes that allow cortical networks, after being modified through TMS pulses, to reach new organized stable states that mediate better performance remain to be clarified.  相似文献   

4.
In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES) of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS) via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks.  相似文献   

5.
Romo R  Hernández A  Zainos A  Brody CD  Lemus L 《Neuron》2000,26(1):273-278
Unequivocal proof that the activity of a localized cortical neuronal population provides sufficient basis for a specific cognitive function has rarely been obtained. We looked for such proof in monkeys trained to discriminate between two mechanical flutter stimuli applied sequentially to the fingertips. Microelectrodes were inserted into clusters of quickly adapting (QA) neurons of the primary somatosensory cortex (S1), and the first or both stimuli were then substituted with trains of current pulses during the discrimination task. Psychophysical performance with artificial stimulus frequencies was almost identical to that measured with the natural stimulus frequencies. Our results indicate that microstimulation can be used to elicit a memorizable and discriminable analog range of percepts, and shows that activation of the QA circuit of S1 is sufficient to initiate all subsequent neural processes associated with flutter discrimination.  相似文献   

6.
The present study aims to validate the applicability of infrared (IR) thermal imaging for the study of brain function through experiments on the rat barrel cortex. Regional changes in neural activity within the brain produce alterations in local thermal equilibrium via increases in metabolic activity and blood flow. We studied the relationship between temperature change and neural activity in anesthetized rats using IR imaging to visualize stimulus-induced changes in the somatosensory cortex of the brain. Sensory stimulation of the vibrissae (whiskers) was given for 10 s using an oscillating whisker vibrator (5-mm deflection at 10, 5, and 1 Hz). The brain temperature in the observational region continued to increase significantly with whisker stimulation. The mean peak recorded temperature changes were 0.048 ± 0.028, 0.054 ± 0.036, and 0.097 ± 0.015°C at 10, 5, and 1 Hz, respectively. We also observed that the temperature increase occurred in a focal spot, radiating to encompass a larger region within the contralateral barrel cortex region during single-whisker stimulation. Whisker stimulation also produced ipsilateral cortex temperature increases, which were localized in the same region as the pial arterioles. Temperature increase in the barrel cortex was also observed in rats treated with a calcium channel blocker (nimodipine), which acts to suppress the hemodynamic response to neural activity. Thus the location and area of temperature increase were found to change in accordance with the region of neural activation. These results indicate that IR thermal imaging is viable as a functional quantitative neuroimaging technique.  相似文献   

7.
A rich literature has documented changes in cortical representations of the body in somatosensory and motor cortex. Recent clinical studies of brain–machine interfaces designed to assist paralyzed patients have afforded the opportunity to record from and stimulate human somatosensory, motor, and action-related areas of the posterior parietal cortex. These studies show considerable preserved structure in the cortical somato-motor system. Motor cortex can immediately control assistive devices, stimulation of somatosensory cortex produces sensations in an orderly somatotopic map, and the posterior parietal cortex shows a high-dimensional representation of cognitive action variables. These results are strikingly similar to what would be expected in a healthy subject, demonstrating considerable stability of adult cortex even after severe injury and despite potential plasticity-induced new activations within the same region of cortex. Clinically, these results emphasize the importance of targeting cortical areas for BMI control signals that are consistent with their normal functional role.  相似文献   

8.
Face processing relies on a distributed, patchy network of cortical regions in the temporal and frontal lobes that respond disproportionately to face stimuli, other cortical regions that are not even primarily visual (such as somatosensory cortex), and subcortical structures such as the amygdala. Higher-level face perception abilities, such as judging identity, emotion and trustworthiness, appear to rely on an intact face-processing network that includes the occipital face area (OFA), whereas lower-level face categorization abilities, such as discriminating faces from objects, can be achieved without OFA, perhaps via the direct connections to the fusiform face area (FFA) from several extrastriate cortical areas. Some lesion, transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) findings argue against a strict feed-forward hierarchical model of face perception, in which the OFA is the principal and common source of input for other visual and non-visual cortical regions involved in face perception, including the FFA, face-selective superior temporal sulcus and somatosensory cortex. Instead, these findings point to a more interactive model in which higher-level face perception abilities depend on the interplay between several functionally and anatomically distinct neural regions. Furthermore, the nature of these interactions may depend on the particular demands of the task. We review the lesion and TMS literature on this topic and highlight the dynamic and distributed nature of face processing.  相似文献   

9.
Generators of early cortical somatosensory evoked potentials (SEPs) still remain to be precisely localised. This gap in knowledge has often resulted in unclear and contrasting SEPs localisation in patients with focal hemispheric lesions. We recorded SEPs to median nerve stimulation in a patient with right frontal astrocytoma, using a 19-channel recording technique. After stimulation of the left median nerve, N20 amplitude was normal when recorded by the parietal electrode contralateral to the stimulation, while it was abnormally enhanced in traces obtained by the contralateral central electrode. The amplitude of the frontal P20 response was within normal limits. This finding suggests that two dipolar sources, tangential and radial to the scalp surface, respectively, contribute concomitantly to N20 generation. The possible location of the N20 radial source in area 3a is discussed. The P22 potential was also recorded with increased amplitude by the central electrode contralateral to the stimulation, while N30 amplitude was normal in frontal and central traces. We propose that the radial dipolar source of P22 response is independent from both N20 and N30 generators and can be located either in 3a or in area 4. This report illustrates the usefulness of multichannel recordings in diagnosing dysfunction of the sensorimotor cortex in focal cortical lesions.  相似文献   

10.
We investigate the formation and maintenance of ordered topographic maps in the primary somatosensory cortex as well as the reorganization of representations after sensory deprivation or cortical lesion. We consider both the critical period (postnatal) where representations are shaped and the post-critical period where representations are maintained and possibly reorganized. We hypothesize that feed-forward thalamocortical connections are an adequate site of plasticity while cortico-cortical connections are believed to drive a competitive mechanism that is critical for learning. We model a small skin patch located on the distal phalangeal surface of a digit as a set of 256 Merkel ending complexes (MEC) that feed a computational model of the primary somatosensory cortex (area 3b). This model is a two-dimensional neural field where spatially localized solutions (a.k.a. bumps) drive cortical plasticity through a Hebbian-like learning rule. Simulations explain the initial formation of ordered representations following repetitive and random stimulations of the skin patch. Skin lesions as well as cortical lesions are also studied and results confirm the possibility to reorganize representations using the same learning rule and depending on the type of the lesion. For severe lesions, the model suggests that cortico-cortical connections may play an important role in complete recovery.  相似文献   

11.
Multineuronal recordings have revealed that neurons in primary visual cortex (V1) exhibit coordinated fluctuations of spiking activity in the absence and in the presence of visual stimulation. From the perspective of understanding a single cell’s spiking activity relative to a behavior or stimulus, these network fluctuations are typically considered to be noise. We show that these events are highly correlated with another commonly recorded signal, the local field potential (LFP), and are also likely related to global network state phenomena which have been observed in a number of neural systems. Moreover, we show that attributing a component of cell firing to these network fluctuations via explicit modeling of the LFP improves the recovery of cell properties. This suggests that the impact of network fluctuations may be estimated using the LFP, and that a portion of this network activity is unrelated to the stimulus and instead reflects ongoing cortical activity. Thus, the LFP acts as an easily accessible bridge between the network state and the spiking activity.  相似文献   

12.
Human movement sense relies on both somatosensory feedback and on knowledge of the motor commands used to produce the movement. We have induced a movement illusion using repetitive transcranial magnetic stimulation over primary motor cortex and dorsal premotor cortex in the absence of limb movement and its associated somatosensory feedback. Afferent and efferent neural signalling was abolished in the arm with ischemic nerve block, and in the leg with spinal nerve block. Movement sensation was assessed following trains of high-frequency repetitive transcranial magnetic stimulation applied over primary motor cortex, dorsal premotor cortex, and a control area (posterior parietal cortex). Magnetic stimulation over primary motor cortex and dorsal premotor cortex produced a movement sensation that was significantly greater than stimulation over the control region. Movement sensation after dorsal premotor cortex stimulation was less affected by sensory and motor deprivation than was primary motor cortex stimulation. We propose that repetitive transcranial magnetic stimulation over dorsal premotor cortex produces a corollary discharge that is perceived as movement.  相似文献   

13.
Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation.  相似文献   

14.
The organization of neocortex in the short-tailed opossum ( Monodelphis domestica ) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

15.
The organization of neocortex in the short-tailed opossum (Monodelphis domestica) was explored with multiunit microelectrode recordings from middle layers of cortex. Microelectrode maps were subsequently related to the chemoarchitecture of flattened cortical preparations, sectioned parallel to the cortical surface and processed for either cytochrome oxidase (CO) or NADPH-diaphorase (NADPHd) histochemistry. The recordings revealed the presence of at least two systematic representations of the contralateral body surface located in a continuous strip of cortex running from the rhinal sulcus to the medial wall. The primary somatosensory area (S1) was located medially while secondary somatosensory cortex (S2) formed a laterally located mirror image of S1. Auditory cortex was located in lateral cortex at the caudal border of S2, and some electrode penetrations in this area responded to both auditory and somatosensory stimulation. Auditory cortex was outlined by a dark oval visible in flattened brain sections. A large primary visual cortex (V1) was located at the caudal pole of cortex, and also consistently corresponded to a large chemoarchitecturally visible oval. Cortex just rostral and lateral to V1 responded to visual stimulation, while bimodal auditory/visual responses were obtained in an area between V1 and somatosensory cortex. The results are compared with brain organization in other marsupials and with placentals and the evolution of cortical areas in mammals is discussed.  相似文献   

16.
The aim of the present study was to investigate the relationship between the facial region of the first somatosensory cortex (facial SI) and facial region of the motor cortex (facial MI), as the basis of orofacial behaviors during ingestion of fish paste. Area M in the ventral cortex of the cruciate sulcus that was defined as part of the facial MI by and, showed various facial twitches evoked by intracortical microstimulation (ICMS) and recorded many mastication-related neurons (MRNs). Many MRNs in area M had receptive fields (RFs) in lingual, perioral and mandibular regions. The 60% value of activity patterns of MRNs (n = 124) recorded in area M of normal cats, were the pre-SB type (the sustained and pre-movement type) that showed increased firing prior to the start of mastication and then tonic activity during the masticatory period. MRNs recorded in area M of cats with the facial SI lesion, showed a noticeable decrease in MRNs with RFs in the perioral and mandibular regions and with activity of the pre-SB type. These results strongly suggest that blocking facial SI sensory inputs evoked by mastication interferes with the relay of important facial sensory information to area M required for the appropriate manipulation of food during mastication.  相似文献   

17.
Several models of associative learning predict that stimulus processing changes during association formation. How associative learning reconfigures neural circuits in primary sensory cortex to "learn" associative attributes of a stimulus remains unknown. Using 2-photon in vivo calcium imaging to measure responses of networks of neurons in primary somatosensory cortex, we discovered that associative fear learning, in which whisker stimulation is paired with foot shock, enhances sparse population coding and robustness of the conditional stimulus, yet decreases total network activity. Fewer cortical neurons responded to stimulation of the trained whisker than in controls, yet their response strength was enhanced. These responses were not observed in mice exposed to a nonassociative learning procedure. Our results define how the cortical representation of a sensory stimulus is shaped by associative fear learning. These changes are proposed to enhance efficient sensory processing after associative learning.  相似文献   

18.
The properties of specific cortical cell types enable greater understanding of how cortical microcircuits process and transmit sensory, motor, and cognitive information. Previous reports have characterized the intrinsic properties of the inverted pyramidal cell (IPC) where the most prominent dendrite is orientated towards the cortical white matter. Using whole cell patch clamp recordings from rat and mouse somatosensory cortex in conjunction with electric microstimulation of the white matter we characterized the synaptic inputs onto IPCs and the more common upright pyramidal cell (UPC) in the infragranular layers. Both classes of pyramidal cells received monosynaptic glutamatergic input following white matter stimulation, but varied on a number of parameters. Most prominently, UPCs displayed higher amplitude responses and showed greater rates of depression compared to IPCs. These data reinforce the view that IPCs are a separate functional class of cortical neuron.  相似文献   

19.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

20.
The evoked potential (EP) over primary somatosensory cortex (SI) was monitored before and after a complete lesion of the primate dorsal column (DC) pathway on one side. The EP was elicited by electrocutaneous or mechanical stimulation of either foot, and was recorded from the contralateral cortical surface for periods of up to 3 months after the lesion. The amplitudes of the three major peaks (P20, N50, and P90) of the cortical somatosensory EP were significantly reduced following interruption of the contralateral DC. Over weeks following the lesion, there was a significant increase in amplitude of the P90 component of the EP that was not evident in the other peaks. The postlesion increases in P90 amplitude were correlated with improved performance on a task that required grasping with either foot, suggesting that behavioral recovery from a DC lesion results in part from neural plasticity, as opposed to a simple relearning of the task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号