首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as Gifford–McMahon (GM) and Stirling coolers because of the absence of moving parts in low temperature. This paper performs a two-dimensional computational fluid dynamic (CFD) simulation of a Gifford–McMahon type double inlet pulse tube refrigerator (DIPTR), operating under a variety of thermal boundary conditions. A commercial Computational Fluid Dynamics (CFD) software package Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. Helium is used as working fluid for the entire simulation. The simulated DIPTR consists of a transfer line, an after cooler, a regenerator, a pulse tube, a pair of heat exchangers for cold and hot end, an orifice valve with connecting pipe, a double inlet valve with connecting pipe and a reservoir. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary condition is sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the hot end and cold-end heat exchangers. The general results, such as the cool down behaviors of the system, phase relation between mass flow rate and pressure at pulse tube section and the temperature profile along the wall of the cooler are presented.The simulation shows the minimum decrease in temperature at cold-end heat exchanger for a particular combination of cryocooler assembly. The CFD simulation results are compared with available experimental data. Comparisons show that there is a reasonable agreement between CFD simulation and experimental results.  相似文献   

2.
新型平板热管式PV/T热泵系统的集热模块优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了新型平板热管式PV/T热泵系统的数学模型,通过实验测量得到系统在各工况下运行时的实验数据,并验证了模型的准确性和可靠性。基于验证后的数学模型,对系统的热性能、电性能和热泵系统的性能进行模拟研究。结果表明,在冬季工况下,系统的日平均热功率、电功率和COP分别为274.5 W、93.5 W和2.7。由于冬季室外环境温度较低,在冬季运行时,集热系统会通过光伏板表面向周围环境散失大量的热,导致系统的集热量不能满足热泵侧的热需求,直观表现为蒸发侧集热水箱水温在全天呈现下降的趋势。因此通过增加集热器对系统的集热模块进行优化,优化后系统的日平均热功率提升至654.2 W,COP提升至6.9。  相似文献   

3.
A passive radiative cooling system was designed, constructed and tested under clear skies. This refrigerator operates by losing heat to the night sky through infrared (i.r.) radiation emission. It consists of a radiator, an array of heat pipe elements and a cold chamber. The heat pipe elements are so arranged that they act as thermal diodes, transferring heat from the cold chamber to the radiator. Performance tests show that the system has a cooling capacity of 628 kJ/m2 per night with a sky coefficient of performance of 0.26. The lowest temperature attained in the cold chamber was 12.8°C for an ambient temperature of 20°C. The overall results indicate that the system has a great potential for providing a cold storage facility in developing countries and in remote areas.  相似文献   

4.
Sorption heat pipe (SHP) combines the enhanced heat and mass transfer in conventional heat pipes with sorption phenomena in the sorbent bed. SHP consists of a sorbent system (adsorber/desorber and evaporator) at one end and a condenser + evaporator at the other end. It can be used as a cooler/heater and be cooled and heated as a heat pipe. SHP is suggested for space and ground application, because it is insensitive to some “g” acceleration. This device can be composed of a loop heat pipe (LHP), or capillary pumped loop (CPL) and a solid sorption cooler. The most essential feature is that LHP and SHP have the same evaporator, but are working alternatively out of phase. SHP can be applied as a cryogenic cooler, or as a fluid storage canister. When it is used for cryogenic thermal control of a spacecraft on the orbit (cold plate for infrared observation of the earth, or space), or efficient electronic components cooling device (lased diode), it is considered as a cooler. When it is applied as a cryogenic storage system, it insures the low pressure of cryogenic fluid inside the sorbent material at room temperature.  相似文献   

5.
A novel loop heat pipe system was designed for use in solar hot water heating and an analytical model was developed to investigate its thermal performance and determine six major limits to system operation, i.e. capillary limit, entrainment limit, viscous limit, boiling limit, sonic limit, and filled liquid mass limit. Relations among the limits and several associated parameters, i.e. the heat pipe operating temperature, wicks type, heat pipe diameter, and height difference between the absorbing pipes array and condenser (heat exchanger), were established through a comprehensive analyses. It was found that the levels of capillary, entrainment, viscous, sonic, and filled liquid mass limits increased with the increasing temperature; however, the boiling limit was in the adverse trend. It was also found that the mesh screen wicks were able to obtain a higher capillary limit than sintered powder wicks, whilst other limits remained same. Larger pipe diameters would lead to higher operating limits. The height difference between the condenser (heat exchanger) and absorbing pipes (absorber) was the most important factor impacting on heat transfer capacities of the system, and largely affected the capillary limit of the system. It was noted when the pipe (inner) diameter increased to 5.6 mm or above, the governing limit of the system switched from entrainment to capillary. Relationship between the system governing limit, i.e. capillary limit, and the above addressed parameters were analysed. Adequate system configuration and operating conditions were suggested, which were summarized as follows: 6 mm of pipe inner diameter with mesh screen wicks, 58°C of heat pipe operating temperature, and 1.3 m height difference between absorber and condenser (heat exchanger). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Waste heat recovery helps reduce energy consumption, decreases carbon emissions, and enhances sustainable energy development. In China, energy-intensive industries dominate the industrial sector and have significant potential for waste heat recovery. We propose a novel waste heat recovery system assisted by a heat pipe and thermoelectric generator (TEG) namely, heat pipe TEG (HPTEG),to simultaneously recover waste heat and achieve electricity generation. Moreover, the HPTEG provides a good approach to bridging the mismatch between energy supply and demand. Based on the technical reserve on high-temperature heat pipe manufacturing and TEG device integration, a laboratory-scale HPTEG prototype was established to investigate the coupling performances of the heat pipes and TEGs. Static energy conversion and passive thermal transport were achieved with the assistance of skutterudite TEGs and potassium heat pipes. Based on the HPTEG prototype, the heat transfer and the thermoelectric conversion performances were investigated. Potassium heat pipes exhibited excellent heat transfer performance with 95% thermal efficiency. The isothermality of such a heat pipe was excellent, and the heat pipe temperature gradient was within 15°C. The TEG's thermoelectric conversion efficiency of 7.5% and HPTEG's prototype system thermoelectric conversion efficiency of 6.2% were achieved. When the TEG hot surface temperature reached 625°C, the maximum electrical output power of the TEG peaked at 183.2 W, and the open-circuit voltage reached 42.2 V. The high performances of the HPTEG prototype demonstrated the potential of the HPTEG for use in engineering applications.  相似文献   

7.
针对芯片功耗与集成度提高而导致的局部热点问题,设计了一种用于芯片散热的复合热沉环路热管系统。建立了环路热管蒸发段模型,通过数值模拟的方法,证明了复合热沉环路热管系统能够降低热点温度,提高散热表面的温度均匀程度,且散热效果与热点的分布位置有关。当热点的热流密度为160W/cm2,热沉横向、纵向导热率分别为1500W/(m?K)、24W/(m?K)时,热点温度为88.88°C,相比于无热沉时降低了5.96°C。研究了不同热沉导热率下的热沉厚度对热点温度的影响,结果表明:若导热率各项同性,热点温度随热沉厚度的增加而降低,之后趋向不变;若为各项异性,存在最优的热沉厚度,使热点温度最低。  相似文献   

8.
Liu Jun  Zhang Xu  Gao Jun  Yang Jie 《Renewable Energy》2009,34(12):2898-2904
Total thermal resistance of ground heat exchanger (GHE) is comprised of that of the soil and inside the borehole. The thermal resistance of soil can be calculated using the linear source theory and cylindrical source theory, while that inside the borehole is more complicated due to the integrated resistance of fluid convection, and the conduction through pipe and grout. Present study evaluates heat exchange rate per depth of GHE by calculating the total thermal resistance, and compares different methods to analyze their similarities and differences for engineering applications. The effects of seven separate factors, running time, shank spacing, depth of borehole, velocity in the pipe, thermal conductivity of grout, inlet temperature and soil type, on the thermal resistance and heat exchange rate are analyzed. Experimental data from several real geothermal heat pump (GHP) applications in Shanghai are used to validate the present calculations. The observations from this study are to provide some guidelines for the design of GHE in GHP systems.  相似文献   

9.
地源热泵系统作为利用可再生能源的暖通空调技术,具有节能、环保等优点,在世界范围内被广泛使用。土壤作为地源热泵系统的冷热源,对整个系统有着至关重要的影响。不同建筑负荷特性要求系统对土壤的取放热量不同,二者的不平衡会使土壤的温度发生变化,影响整个系统的运行。对特定建筑地源热泵系统土壤的热物性测试是设计地埋管系统的重要依据。本文对热物性测试的理论依据进行了简单介绍,并对具体事例进行了分析计算,得出岩土体的导热系数等具体热物性参数,为地源热泵系统的精确设计提供了依据。  相似文献   

10.
设计了一套复合式土壤源热泵性能实验台,采用冷却塔作辅助冷源、太阳能热水器作辅助热源,能够实现冬季供暖、夏季供冷、一年四季提供60~80℃生活热水的功能。给出了系统中热泵机组、空调末端设备、冷却塔、水泵、太阳能热水器等主要部件的选型计算方法,经搭建好的土壤源热泵性能实验台运行测试,制冷和制热效果良好,同时也解决了土壤热平衡问题。  相似文献   

11.
水源热泵空调系统运行优化   总被引:1,自引:0,他引:1  
胡桂秋 《节能》2012,31(5):55-58
以采用水源热泵机组的某住宅小区为例,分析其建筑的冷热负荷特性,探讨其变化规律;对水源热泵机组、水泵系统、热源井的运行控制策略提出优化方案,为同类工程的节能运行提供参考。  相似文献   

12.
Dispersions of oil in water are encountered in a variety of industrial processes leading to a reduction in the performance of the heat exchangers when thermally treating such two phase fluids. This reduction is mainly due to changes in the thermal and hydrodynamical behavior of the two phase fluid. In the present work, an experimental investigation was performed to study the effects of light oil fouling on the heat transfer coefficient in a double‐pipe heat exchanger under turbulent flow conditions. The effects of different operating conditions on the fouling rate were investigated including: hot fluid Reynolds number (the dispersion), cold fluid Reynolds number, and time. The oil fouling rate was analyzed by determining the growth of fouling resistance with time and through pressure drop measurements. The influence of copper oxide (CuO) nanofluid on the fouling rate in the dispersion was also determined. It was found that the presence of dispersed oil causes a reduction in heat transfer coefficient by percentages depending on the Reynolds number of both cold and hot fluids and the concentration of oil. In addition, the time history of fouling resistance exhibited different trends with the flow rates of both fluids and its trend was influenced appreciably by the presence of CuO nanofluid.  相似文献   

13.
The enhancement heat transfer of the heat transfer devices can be done by changing the fluid transport properties and flow features of working fluids. In the present study, therefore, the enhancement of heat pipe thermal efficiency with nanofluids is presented. The heat pipe is fabricated from the straight copper tube with the outer diameter and length of 15, 600 mm, respectively. The heat pipe with the de-ionic water, alcohol, and nanofluids (alcohol and nanoparticles) are tested. The titanium nanoparticles with diameter of 21 nm are used in the present study which the mixtures of alcohol and nanoparticles are prepared using an ultrasonic homogenizer. Effects of %charge amount of working fluid, heat pipe tilt angle and %nanoparticles volume concentrations on the thermal efficiency of heat pipe are considered. The nanoparticles have a significant effect on the enhancement of thermal efficiency of heat pipe. The thermal efficiency of heat pipe with the nanofluids is compared with that the based fluid.  相似文献   

14.
In recent years, developing an energy efficient conventional heat pipe is more important because of the development of electronics and computer industries. To enhance the thermal performance of heat pipe, different nanofluids have been widely used. In this paper, an experimental investigation of heat transfer performance of heat pipe has been conducted using three different working fluids such as DI water, CuO nanofluid and TiO2 nanofluid. The heat pipe used in this study is made up of copper layered with two layers of screen mesh wick for better capillary action. The Parameters considered in this study are heat input, angle of inclination and evaporator fill ratio. The concentration of nanoparticle used in this study is of 1.0 wt.%. From the experimental results, comparisons of thermal performance were made between the heat pipes using various working fluids. Among various fill ratio charged, the heat pipe shows good thermal performance when it is operated at 75% fill ratio for all working fluids. However, the heat pipe operated with CuO nanofluid showed higher results compared with TiO2 nanofluid and DI water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In China, because of the emergence of a large number of high‐rise buildings, the solar hot water heater system often uses the balcony wall‐mounted method for installation. The thermoelectric energy converter is proposed as one of the possible technologies to incorporate solar water heater to produce electricity for building application. In this paper, the conceptual development and theoretical analysis of a novel micro‐channel heat pipe evacuated tube solar collector‐incorporated thermoelectric generation are all proposed. The new system takes into account many advantages, including the high heat transfer, low convective heat loss, and low contact thermal resistance. The exergy analysis method based on the second law of thermodynamics is also introduced to evaluate the performance of this system. The results show that a novel micro‐channel heat pipe evacuated tube solar collector‐incorporated thermoelectric generation has a high thermal performance with addition of electricity production. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The performance optimization of an endoreversible air refrigerator with variable‐temperature heat reservoirs is carried out by taking the cooling load density, i.e. the ratio of cooling load density to the maximum specific volume in the cycle, as the optimization objective in this paper. The analytical relations of cooling load, cooling load density and coefficient of performance are derived with the heat resistance losses in the hot‐ and cold‐side heat exchangers. The maximum cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, the optimum distribution of heat conductance of the hot‐ and cold‐side heat exchangers for the fixed total heat exchanger inventory, and the heat capacity rate matching between the working fluid and the heat reservoirs. The influences of some design parameters, including the heat capacitance rate of the working fluid, the inlet temperature ratio of heat reservoirs and the total heat exchanger inventory on the maximum cooling load density, the optimum heat conductance distribution, the optimum pressure ratio and the heat capacity rate matching between the working fluid and the heat reservoirs are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander and the hot‐ and cold‐side heat exchangers. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
钟春  潘阳 《江西能源》2009,(2):38-40
通过建立热管的简化热阻模型,采用数值计算的方法模拟了热管的动态蓄冰。模拟结果与实验结果吻合。同时,对热管冷凝段和蒸发段的长度比为1:2和1:4两种形式进行了数值模拟比较。结果表明,1:4的布置形式更优。  相似文献   

18.
A heat-regenerative adsorption refrigerator using spiral plate heat exchangers as adsorbers and an adsorption heat pump for air conditioning using plate fin heat exchangers as adsorbers have been developed and researched, experimental research results are shown. The activated carbon–methanol adsorption pair is used for the two adsorption systems, which yield a refrigeration power density of more than 2·6 kg ice per day per kg activated carbon and 150 W kg−1 activated carbon for air conditioning, respectively. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A simplified model predicting the heat transfer performance of a heat sink base with a high thermal conductivity was developed. Numerical analysis was performed using the commercial software FLUENT. The investigation indicates that for heat sink bases with a high effective thermal conductivity, such as the base embedded with a typical heat pipe, the entire heat sink can be modeled as a flat plate with a uniform temperature and an effective convection heat transfer coefficient. This simplified model can be used to determine the heat transfer performance of a heat sink embedded with a typical heat pipe or vapor chamber.  相似文献   

20.
李谟胜  周东一  肖洁  罗新芳 《节能》2012,31(8):67-69
在传统电冰箱的基础上,另独立设置2个保温箱贮存冷热饮用水。冷水制取是在冷水箱中设置蒸发器,将冷水箱中的水制冷。热水制取是在热水箱中设置逆流套管式冷凝器,利用制冷系统的排热量将饮水机中的水加热到一定温度,如温度不够则再通过电加热器,可将饮用水加热至沸腾,冷凝管通热水箱后可采用风冷式和水冷却两种方式相结合。根据设计和理论计算,多功能电冰箱的冷凝器可将饮用水加热到65℃左右,再用电加热器,可将饮用水加热至沸腾,比市场上纯粹用电加热的饮水机可节电22.31W;利用制冷系统将冷水箱中的水制冷,每产生4℃冷饮用水2L比市场上一般的压缩式制冷饮水机可节约大约2.3×105J的能量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号