首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) with very different weight‐average molecular weights (Mw) of 4.0 × 103 and 7.0 × 105 g mol?1 (Mw(PDLA)/Mw(PLLA) = 175) were blended at different PDLA weight ratios (XD = PDLA weight/blend weight) and their crystallization from the melt was investigated. The presence of low molecular weight PLLA facilitated the stereocomplexation and thereby lowered the cold crystallization temperature (Tcc) for non‐isothermal crystallization during heating and elevated the radial growth rate of spherulites (G) for isothermal crystallization, irrespective of XD. The orientation of lamellae in the spherulites was higher for the neat PLLA, PDLA and an equimolar blend than for the non‐equimolar blends. It was found that the orientation of lamellae in the blends was maintained by the stereocomplex (SC) crystallites. Although the G values are expected to decrease with an increase in XD or the content of high‐molecular‐weight PDLA with lower chain mobility compared with that of low‐molecular‐weight PLLA, G was highest at XD = 0.5 where the maximum amount of SC crystallites was formed and the G values were very similar for XD = 0.4 and XD = 0.6 with the same enantiomeric excess. This means that the effect of SC crystallites overwhelmed that of chain mobility. The nucleating mechanisms of SC crystallites were identical for XD = 0.1–0.5 in the Tc range 130–180 °C. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
A new stereo pentablock copolymer consisting of poly(l ‐lactide) (PLLA: A), poly‐d ‐lactide (PDLA: B), and poly(butylene succinate) (PBS: C) is synthesized by two‐step ring‐opening polymerization of d ‐ and l ‐lactides in the presence of bis‐hydroxyl‐terminated PBS prepolymer that has been prepared by the ordinary polycondensation. The pentablock copolymers (PLLA‐PDLA‐PBS‐PDLA‐PLLA) as well as the triblock copolymers (PLLA‐PBS‐PLLA) obtained as the intermediates show different properties depending on the polymer compositions. In the pentablock copolymers, the direct connection of the PLLA and PDLA blocks allows easy formation of the stereocomplex crystals, while the introduction of the semicrystalline PBS block is effective not only for changing the crystallization kinetics but also for imparting an elastomeric property.

  相似文献   


3.
The effects of the molecular weight of poly(D ‐lactic acid) (PDLA), which forms stereocomplex (SC) crystallites with poly(L ‐lactic acid) (PLLA), and those of processing temperature Tp on the acceleration (or nucleation) of PLLA homocrystallization were investigated using PLLA films containing 10 wt% PDLA with number‐average molecular weight (Mn) values of 5.47 × 105, 9.67 × 104 and 3.67 × 104 g mol–1 (PDLA‐H, PDLA‐M and PDLA‐L, respectively). For the PLLA/PDLA‐H and PLLA/PDLA‐M films, the SC crystallites that were ‘non’‐melted and those that were ‘completely’ melted at Tp values just above their endset melting temperature and recrystallized during cooling were found to act as effective accelerating (or nucleation) agents for PLLA homocrystallization. In contrast, SC crystallites formed from PDLA‐L, having the lowest Mn, were effective accelerating agents without any restrictions on Tp. In this case, the accelerating effects can be attributed to the plasticizer effect of PDLA‐L with the lowest Mn. The accelerating effects of SC crystallites in the PLLA/PDLA‐H and PLLA/PDLA‐M films was dependent on crystalline thickness for Tp values below the melting peak temperature of SC crystallites, whereas for Tp values above the melting peak temperature the accelerating effects are suggested to be affected by the interaction between the SC crystalline regions and PLLA amorphous regions.  相似文献   

4.
Toughening modification of poly(l -lactide) (PLLA) with rubber particles is often realized at the cost of transparency, mechanical strength, and modulus because high rubber loadings are generally required for toughening. In this work, a promising strategy to simultaneously improve the transparency and stiffness–toughness performance of poly(butyl acrylate)-poly(methyl methacrylate) (BAMMA) core-shell rubber nanoparticles toughened PLLA blends by utilizing the stereocomplex (SC) crystallization between PLLA and poly(d -lactide) (PDLA) is devised. The results reveal that the construction of SC crystallites in PLLA matrix via melt-mixing PLLA/BAMMA blends with PDLA can prevent BAMMA nanoparticles from aggregation and promote them to form network-like structure at lower contents. As a result, not only higher toughening efficiency with less rubber contents but also superior transparency is achieved in the PLLA/PDLA/BAMMA blends as compared with the PLLA/BAMMA ones where large aggregated BAMMA clusters are formed. Moreover, the outstanding reinforcement of SC crystallites network for PLLA can impart an enhanced tensile strength and modulus to PLLA/PDLA/BAMMA blends, thus improving the stiffness–toughness performance of PLLA/PDLA/BAMMA blends to a higher degree. This work demonstrates that SC crystallization is a promising solution to solve the contradiction between transparency and mechanical properties and then obtain superior comprehensive performances in rubber toughened PLLA blends.  相似文献   

5.
Stereocomplex formation between poly(l ‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) in the melt state was investigated and altered via the addition of multi‐branched poly(d ‐lactide) (PDLA) additives. Two different multi‐branched PDLA additives, a 3‐arm and 4‐arm star‐shaped polymeric structure, were synthesized as potential heat resistance modifiers and incorporated into PLLA at 5, 10, and 20 (w/w) through melt blending. Mechanical and thermomechanical properties of these blends were compared with linear poly(l ‐lactide) (PLLA) as well as with blends formed by the addition of two linear PDLA analogs that had similar molecular weights to their branched counterparts. Blends with linear PDLA additives exhibited two distinct melting peaks at 170–180°C and 200–250°C which implied that two distinct crystalline domains were present, that of the homopolymer and that of the stereocomplex, the more stable crystalline structure formed by the co‐crystallization of both d ‐ and l ‐lactide enantiomers. In contrast, blends of PLLA with multi‐branched PDLA formed a single broad melting peak indicative of mainly formation of the stereocomplex, behavior which was confirmed by X‐ray diffraction (XRD) analysis. The heat deflection temperature determined by thermal mechanical analysis was improved for all blends compared to neat PLLA, with increases of up to180°C for 20% addition of the 3‐arm PLLA additive. Rheological properties of the blends, as characterized by complex viscosity (η*), remained stable over a wide temperature range. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42858.  相似文献   

6.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

7.
Star-shaped 4-armed stereo diblock poly(lactide)s with the core/shell types of poly(d-lactide) (PDLA)/poly(l-lactide) (PLLA) and PLLA/PDLA (abbreviated as 4-DL and 4-LD, respectively) and the number-average molecular weights of about 1 × 104 g mol−1 were synthesized and the crystallization behavior of neat 4-DL, 4-LD, and their 50/50 blend (abbreviated as 4-DL/4-LD blend) was investigated. Solely stereocomplex (SC) crystallites as crystalline species were formed in the neat 4-DL, 4-LD, and 4-DL/4-LD blend, irrespective of crystallization temperature (100–160 °C). The overall SC crystallization of 4-DL/4-LD blend was highly accelerated compared with that of neat 4-DL and 4-LD, due to the largely elevated spherulite nuclei number per unit mass in the blend. Such high density of nuclei formation in 4-DL/4-LD blend is attributable to the facile intermolecular interaction and subsequent SC nucleation between the PLLA shell of 4-DL and the PDLA shell of 4-LD. The blending method reported in the present study is applicable for various core/shell types of star-shaped stereo diblock stereocomplexationable polymers to accelerate overall SC crystallization and can counterbalance the lowered crystallization rate caused by the star-shaped architecture. Despite the highly accelerated overall SC crystallization of 4-DL/4-LD blend by blending 4-DL and 4-LD, the spherulite growth rate, induction period for spherulite growth, final crystallinity, crystalline species, growth morphology, and crystallization mechanism were not altered by blending 4-DL and 4-LD.  相似文献   

8.
Tatsuro Ouchi 《Polymer》2006,47(1):429-434
Branched poly(lactide)(PLA)s with various lengths of graft chain were synthesized by ring-opening polymerization of l- or d-lactide (l- or d-LA) in bulk using polyglycidol as a macroinitiator. The properties of polymer films of branched PLLA or PDLA obtained and their stereocomplex were investigated through thermal analysis and tensile testing. The branched PLLA or PDLA film exhibited a lower glass transition temperature (Tg), melting temperature (Tm), crystallinity, Young's modulus and a higher strain at break than the corresponding linear PLLA or PDLA film. The branched PLLA/branched PDLA stereocomplex film showed a high maximum stress and a high Young's modulus keeping its high strain at break. Moreover, the usefulness of branched PLLA or PDLA as a plasticizer of linear PLLA was investigated with 1:9 blend or stereocomplex film prepared from the branched PLLA or branched PDLA and linear PLLA. The blend or linear PLLA/branched PDLA stereocomplex film showed a higher strain at break compared with linear PLLA film. The mechanical properties of the blend or linear PLLA/branched PDLA stereocomplex film could easily be controlled by changing the molecular weight of branched PLA.  相似文献   

9.
The effect of xylan propionate (XylPr) as a novel biomass‐derived nucleating agent on the poly(lactide) sterecomplex was investigated. Addition of XylPr to an enantiomeric blend of poly(l ‐lactide) (PLLA) and poly(d ‐lactide) (PDLA) was performed in either the solution state or molten state. The solution blend of PLLA/PDLA with XylPr was prepared by mixing equal volumes of 1 wt% XylPr/PLLA and 1 wt% XylPr/PDLA solutions in chloroform and precipitating in methanol. The solution blend with XylPr showed shorter half‐time crystallization than the solution blend without XylPr in isothermal crystallization between 80 and 140 °C, although homocrystallization occurred. Enhanced stereocomplex crystallization in the solution blend with XylPr was observed at 180 °C, where no crystallization occurred in the solution blend without XylPr. Addition of XylPr to PLLA/PDLA blend in the molten state was performed at 240 °C. Thereafter, the melt blend of PLLA/PDLA with or without XylPr was either quenched in iced water or isothermally crystallized directly from the melt. Isothermal crystallization of the melt‐quenched blend with XylPr gave a similar result to the solution blend with XylPr. In contrast, the melt‐crystallized blend with XylPr formed only stereocomplex crystals after crystallization above 140 °C. Furthermore, the melt‐crystallized blend with XylPr showed a higher crystallinity index and melting temperature than the melt‐crystallized blend without XylPr. This shows that XylPr promotes stereocomplex crystallization only when the blend of PLLA/PDLA with XylPr is directly crystallized from the molten state just after blending. © 2016 Society of Chemical Industry  相似文献   

10.
Stereo diblock polylactides (SDB‐PLAs) composed of relatively short poly(d ‐lactide) (PDLA) segments and relatively long poly(l ‐lactide) (PLLA) segments were synthesized to have a wide number‐average molecular weight (Mn) range of 2.5 × 104–2.0 × 105 g mol?1 and d ‐lactyl unit content of 0.9–38.6%. The effects of incorporated short PDLA segments (Mn = 2.0 × 103–7.7 × 103 g mol?1) on crystallization behavior of the SDB‐PLAs were first investigated during heating after complete melting and quenching or during slow cooling after complete melting. Stereocomplex (SC) crystallites can be formed at d ‐lactyl unit content as low as 4.3 and 5.8% for heating and slow cooling, respectively, and for Mn of PDLA segments as low as 2.0 × 103 and 3.5 × 103 g mol?1, respectively. With decreasing Mn and increasing d ‐lactyl unit content, the cold crystallization temperature during heating decreased and the crystallization temperature during slow cooling increased. With increasing d ‐lactyl unit content, the melting enthalpy (ΔHm) of SC crystallites during heating and the crystallinity (Xc) of SC crystallites after slow cooling increased, whereas ΔHm of PLLA homo‐crystallites during heating and Xc of PLLA homo‐crystallites after slow cooling decreased. The total ΔHm of SC crystallites and PLLA homo‐crystallites during heating and the total Xc after slow cooling became a minimum at d ‐lactyl unit content of 10–15% and gave a maximum at d ‐lactyl unit content of 0%. Despite the accelerated crystallization of some of SDB‐PLAs, the low values of total ΔHm and Xc at d ‐lactyl unit content of 10–15% are attributable to the formation of two crystalline species of SC crystallites and PLLA homo‐crystallites.  相似文献   

11.
Two enantiomeric triblock ABA copolymers composed of poly(L ‐lactide)–poly(ethylene glycol)–poly(L ‐lactide) (PLLA–PEG–PLLA) and poly(D ‐lactide)–poly(ethylene glycol)–poly(D ‐lactide) (PDLA–PEG–PDLA) were synthesized with two different middle‐block PEG chain lengths by ring‐opening polymerization of L ‐lactide and D ‐lactide in the presence of PEG, respectively. A pair of enantiomeric triblock copolymers were combined to form a stereocomplex by a solvent‐casting method. The triblock copolymers and their stereocomplexes were characterized by 1H‐ and 13C‐NMR spectroscopy and gel permeation chromatography. Their crystalline structures and crystalline melting behaviors were analyzed by the wide‐angle X‐ray diffraction method and differential scanning calorimetry. The stereocomplex formed between a pair of enantiomeric triblock copolymers exhibited a higher crystalline melting temperature with a distinctive 3/1 helical crystalline structure. PLLA–PEG–PLLA and its stereocomplex with PDLA–PEG–PDLA were used to fabricate a series of microspheres encapsulating a model protein drug, bovine serum albumin (BSA). They were prepared by a double‐emulsion solvent‐evaporation method. The morphological aspects of the microspheres were characterized and BSA release profiles from them were investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1615–1623, 2000  相似文献   

12.
In order to explore the origin of the higher melting point of poly(lactic acid) (PLA) stereocomplex crystal (SC) than that of homo‐crystal (HC), the equilibrium melting point () differential between SC and HC was determined using the Hoffman–Weeks method. The results showed that, for PLA samples with Mn around 16, 20 and 65 kg mol?1, the differential between SC and HC is around 36, 42 and 55 °C, respectively. Thus, the higher melting point of SC compared to HC does not stem from differential only. For PLA samples with lower Mn, the supercooling differential between poly(l ‐lactic acid) (PLLA)/poly(d ‐lactic acid) (PDLA) blends and PLLA is smaller than that with higher Mn, which means chain diffusion behavior is crucial for SC formation in PLLA/PDLA blends. The fact that the SC adopts the intermolecular parallel arrangement rather than the adjacent chain folding is verified by the greater slope of the melting point of SC versus crystallization temperature fitting curve when Mn is relative higher. © 2018 Society of Chemical Industry  相似文献   

13.
Stereo multiblock poly(lactic acid)s (PLA)s and stereo diblock poly(lactic acid) (DB) with a wide variety of block length of 15.4–61.9 lactyl units are synthesized, and the effects of block length sequence on crystallization and spherulite growth behavior are investigated at different crystallization temperatures, in comparison with neat poly(L ‐lactide) (PLLA), poly(D ‐lactide) (PDLA), and PLLA/PDLA blend. Only stereocomplex crystallites as crystalline species are formed in the stereo multiblock PLAs and DB, irrespective of block length and crystallization temperature. The maximum crystallinities (33–61%), maximum radial growth rate of spherulites (0.7–56.7 μm min?1), and equilibrium melting temperatures (182.0–216.5°C) increased with increasing block length but are less than those of PLLA/PDLA blend (67 %, 122.5 μm min?1, and 246.0°C). The spherulite growth rates and overall crystallization rates of the stereo multiblock PLAs and DB increased with increasing block length and are lower than that of PLLA/PDLA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Poly(lactide) (PLA) is an interesting biodegradable polymer but has limited application because of its brittleness and low thermal stability. We found that both drawbacks of PLA were solved by forming stereocomplexes augmented with natural rubber (NR). Equal amounts of poly(l ‐lactide) (PLLA) and poly(d‐ lactide) (PDLA) stereoisomers were blended to form a stereocomplex (St‐PLA). Varying amounts of NR (5–30% by weight) were added simultaneously to equal amounts of the stereo isomers by melt blending. FTIR and XRD spectra demonstrated that, despite the added NR, the stereocomplex structures were still generated and complete. Stereocomplex crystallinity decreased with increasing NR content, verified by DSC and XRD, as well as polarizing optical micrographs which showed fewer spherulites at higher NR content. Measured glass transition temperatures (Tg) of St‐PLA/NR blends were significantly lower than for neat St‐PLA, exhibiting shifts to as low as 46°C at 30%wt NR content, because of rubber dispersed in St‐PLA segments expanding the free volume and enhancing chain mobility. Thermal stability of the blends, estimated by TGA, showed desired results, for example, at the 50% weight loss point, the temperature of all St‐PLA/NR blends moved to higher temperatures than neat St‐PLA. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

15.
The enhancement of mechanical properties were achieved by solution blending of poly(d ‐lactide) (PDLA) and 5‐arm poly(l ‐lactide) (5‐arm PLLA). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated almost complete stereocomplex could be obtained when 5‐arm PLLA exceeded 30wt %. Tensile test results showed that the addition of 5‐arm PLLA in linear PDLA gave dramatically improvement both on tensile strength and elongation at break, which generally could not be increased simultaneously. Furthermore, this work transformed PDLA from brittle polymer into tough and flexible materials. The mechanism was proposed based on the TEM results: the stereocomplex crystallites formed during solvent evaporation on the blends were small enough (100–200 nm), which played the role of physical crosslinking points and increased the interaction strength between PDLA and 5‐arm PLLA molecules, giving the blends high tensile strength and elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42857.  相似文献   

16.
A kind of reactive comb (RC) polymer, which is constituted by poly(methyl methacrylate) backbone and side chains and a few epoxide groups that distribute randomly along the backbone, has been applied as compatibilizers for the thermodynamically immiscible poly(l ‐lactide) (PLLA)/polycarbonate (PC) blend (50/50, wt/wt). Phase morphology and physical properties of the compatibilized PLLA/PC blends are characterized by scanning electron microscopy, transmission electron microscopy, and tensile tests. It has been found that the morphologies of the PLLA/PC blends are significantly ameliorated with the addition of RC polymers. A type of PLLA/PC blend with stable co‐continuous morphology has been achieved by the incorporation of more than 3 wt % of RC polymers. The mechanical tests showed that the co‐continuous PLLA/PC blends have an excellent stiffness‐toughness balance with high modulus and significantly improved ductility. Especially, the elongation at break of the PLLA/PC blend compatibilized by 10 wt % of RC polymers is 10 times higher than that of neat PLLA, in which the blend exhibits a cocontinuous lamellar microstructure. Furthermore, the PLLA/PC blends with cocontinuous morphology exhibit dramatically improved thermal stability as compared to neat PLLA when the temperature is over the Tg of the PLLA phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46047.  相似文献   

17.
The phase behaviors for the blends of poly(3‐hydroxypropionate) (PHP), poly(L ‐lactide) (PLLA), poly(D ‐lactide) (PDLA), and poly(D,L ‐lactide) (PDLLA) with catechin were investigated by differential scanning calorimetry. In PLLA/catechin, PDLA/catechin, and PDLLA/catechin blends, two glass transitions were detected when the catechin content was ≥40 wt %, whereas in PHP/catechin blends only one glass transition was observed over the whole range of blend compositions. The former and the latter results should reflect the inhomogeneous and the homogeneous nature of the blends, respectively, in the amorphous phase. These different phase behaviors should arise from the differences in the chemical structures between PHP and PLLA/PDLA/PDLLA, which dominates the strength and the number of intermolecular hydrogen‐bonding interactions between the ester carbonyl groups of polyesters and the phenol groups of catechin. As detected by FTIR spectroscopy, in comparison with PHP, the steric hindrance of side‐chain methyl groups of PLLA, PDLA, and PDLLA might restrain the formation of hydrogen bonds between their ester carbonyl groups and the phenol hydroxyl groups of catechin, even weakening the strength of such hydrogen bonds. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3565–3573, 2004  相似文献   

18.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Polymer/multi‐walled carbon nanotube (MWCNT) composites are one of the most promising alternatives to conventional polymer composites filled with micrometre‐sized fillers. This approach can also be applied for the improvement of mechanical properties and thermal stability of biodegradable aliphatic polyesters, such as poly(L ‐lactide) (PLLA), which have been receiving increasing attention due to environmental concerns. Thermal degradation behaviour provides useful information for the determination of the optimum processing conditions and for identification of potential applications of final products. RESULTS: The PLLA/MWCNT composites investigated showed a higher thermal degradation peak temperature and onset temperature of degradation along with a higher amount of residue at the completion of degradation than neat PLLA. Moreover, PLLA/MWCNT composites with a greater MWCNT content showed higher activation energy of thermal degradation than those with a lower MWCNT loading, which confirmed the positive effect of MWCNT incorporation on the enhancement of PLLA thermal stability. CONCLUSION: This study explored the thermal degradation behaviour of PLLA/MWCNT composites by observing the weight loss, molecular weight and mechanical properties during non‐isothermal and isothermal degradation. The incorporation of MWCNTs into the PLLA matrix enhanced considerably the mechanical properties and thermal stability. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号