首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of nanoclay reinforced, thermoresponsive hydrogels were prepared, one based on poly(N‐isopropylacrylamide) (PNIPA) and the other on semi‐interpenetrating networks containing PNIPA and poly(N‐vinyl pyrrolidone) (PVP), designated as SIPNs. The gels were crosslinked with 1, 3, and 5 wt % inorganic clay (hectorite) and SIPN gels additionally contained 1 wt % of PVP. The hydrogels were tested in the “as‐prepared state,” i.e., at 10 wt % PNIPA concentration in water and at equilibrium (maximum) swelling. Increasing the concentration of nanoclays increases crosslink density, modulus, tensile strength, elongation (except in equilibrium swollen gels), hysteresis and with decreases in the degree of swelling, broadening of the phase transition region, and a decrease in elastic recovery at high deformations. The presence of linear PVP in the networks increases porosity and the pore size, increases swelling, deswelling rates, and hysteresis, but decreases slightly lower critical solution temperature (LCST), tensile strength, elongation, and elastic recovery. The strongest hydrogels were ones with 10 wt % PNIPA and 5 wt % of nanoclays, displaying tensile strengths of 85 kPa and elongation of 955%. All properties of hydrogels at the equilibrium swollen state are lower than in the as‐prepared state, due to the lower concentration of chains per unit volume, but the trends are preserved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Three series of novel semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropylacrylamide), PNIPA, and different amounts of the linear poly(N‐vinylpyrrolidone), PVP, were synthesized to improve the mechanical properties and thermal response of PNIPA gels. The effect of the incorporation of the linear PVP into the temperature responsive networks on the temperature‐induced transition, swelling/deswelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with varying molar ratios (25/1 to 100/1) of the monomer (N‐isopropylacrylamide) to the crosslinker (N,N′‐methylenebisacrylamide). The hydrogels were characterized by determination of the equilibrium degree of swelling, the dynamic shear modulus and the effective crosslinking density, as well as tensile strength and elongation at break. Furthermore, the deswelling kinetics of the hydrogels was studied by measuring their water retention capacity. The inclusion of the linear hydrophilic PVP in the PNIPA networks increased the equilibrium degree of swelling. The tensile strength of the semi‐interpenetrating networks (SIPNs) reinforced with linear PVP was higher than that of the PNIPA networks. The elongation at break of these SIPNs varied between 22% and 55%, which are 22 – 41% larger than those for pure PNIPA networks. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Macroporous poly(N‐isopropylacrylamide) (PNIPA) hydrogels were synthesized by free‐radical crosslinking polymerization in aqueous solution from N‐isopropylacrylamide monomer and N,N‐methylenebis (acrylamide) crosslinker using poly(ethylene glycol) (PEG) with three different number‐average molecular weights of 300, 600 and 1000 g mol?1 as the pore‐forming agent. The influence of the molecular weight and amount of PEG pore‐forming agent on the swelling ratio and network parameters such as polymer–solvent interaction parameter (χ) and crosslinking density (νE) of the hydrogels is reported and discussed. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying different molecular weights and compositions of PEG during polymerization. At a temperature below the volume phase transition temperature, the macroporous hydrogels absorbed larger amounts of water compared to that of conventional PNIPA hydrogels, and showed higher equilibrated swelling ratios in aqueous medium. Particularly, the unique macroporous structure provides numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to external temperature changes during the swelling and deswelling process. These macroporous PNIPA hydrogels may be useful for potential applications in controlled release of macromolecular active agents. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
Maleic anhydride (MA) was grafted onto both partially and fully hydrolyzed poly(vinyl alcohol) (PVA) in the presence of an initiator. Strong polyelectrolyte polymers were prepared by sulfonation of PVA–MA grafts. The sulfonation was completed by reaction of hydroxyl groups of PVA–MA grafts with two different sulfonating reagents (chlorosulfonic acid and pyridine sulfonic acid). The sulfonation degree was evaluated by acid–base titration and 1H NMR analysis. The solution behaviour of the prepared grafts was evaluated from viscosity measurements. Four kinds of water‐insoluble PVA–MA and PVA–MA‐SO3H hydrogels were prepared by heat treatment, physical gelation and chemical crosslinking with different weight ratios of N,N‐methylene bisacrylamide (MBA) crosslinker. The swelling parameters were measured for all prepared gels in deionized water and aqueous solutions at different pH values from 2 to 12 having constant ionic strength (I = 0.1). All gels exhibit a different swelling behaviour upon environmental pH changes. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
A series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was prepared by free‐radical crosslinking copolymerization of N‐isopropylacrylamide (NIPA) and N,N′‐methylenebisacrylamide (BAAm) in aqueous solutions of poly(ethylene glycol) of molecular weight 300 g/mol (PEG). The amount of PEG in the polymerization solvent, the crosslinker (BAAm) content, and the gel preparation temperature (Tprep) were varied in the gelation experiments. The hydrogels were characterized by the equilibrium swelling and elasticity tests as well as by the measurements of the deswelling–reswelling kinetics of the hydrogels in response to a temperature change between 25 and 48°C. The rate of deswelling of the swollen gel increases while the rate of reswelling of the collapsed gel decreases as the amount of PEG in the polymerization solvent is increased or as the crosslinker content is decreased. The Tprep effect on the swelling kinetics of the hydrogels was only observed if the PEG content of the polymerization solvent is less than 20%, which is explained with the screening of H‐bonding interactions in concentrated PEG solution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 37–44, 2006  相似文献   

6.
The swelling and shrinking behaviors of a series of poly(N‐isopropylacrylamide) (PNIPA) hydrogels are studied in aqueous solutions of sodium dodecylbenzenesulfonate (SDBS). Between 0 and 3 mol % 2‐acrylamido‐2‐methylpropanesulfonic acid sodium salt (AMPS) is used as an ionic comonomer in the hydrogel synthesis. It is shown that the collapsed PNIPA gels in water at 52°C start to swell above a critical SDBS concentration in the external solution. This critical concentration decreases as the ionic group content of PNIPA gel increases. A comparison of the swelling and shrinking experiments in SDBS solutions indicates strong hysteresis behavior of PNIPA gels. A more diluted solution is required to make a swollen gel start to reshrink than to cause gel swelling. The results show strong attractive forces between the isopropyl groups of the PNIPA network and the DB groups of SDBS molecules. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1228–1232, 2002  相似文献   

7.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

8.
Phase separation during the formation of poly(N‐isopropylacrylamide) (PNIPA) hydrogels was investigated using real‐time photon transmission and temperature measurements. The hydrogels were prepared by free‐radical crosslinking polymerization of N‐isopropylacrylamide (NIPA) in the presence of N,N′‐methylenebisacrylamide (BAAm) as a crosslinker in an aqueous solution. The onset reaction temperature T0 was varied between 20 and 28°C. Following an induction period, all the gelation experiments resulted in exothermic reaction profiles. A temperature increase of 6.5 ± 0.6°C was observed in the experiments. It was shown that the temperature increase during the formation and growth process of PNIPA gels is accompanied by a simultaneous decrease in the transmitted light intensities Itr. The decrease in Itr at temperatures below the lower critical solution temperature of PNIPA was explained by the concentration fluctuations due to the inhomogeneity in the gel network. At higher temperatures, it was shown that the gel system undergoes a phase transition via a spinodal decomposition process. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3589–3595, 2002  相似文献   

9.
A series of biodegradable porous hydrogels, based on thermosensitive N‐isopropylacrylamide (NIPAAm) and biodegradable crosslinker‐polycaprolactone diacrylate (PCLdA) that was synthesized from polycaprolactone diol with acryloyl chloride were prepared by photopolymerization at low temperature. The effect of the crosslinker content and gelation method on the swelling behaviors and physical properties for the poly(NIPAAm) hydrogels was investigated. Results showed that the swelling ratio of the gel in deionized water decreased with an increase of the content of polycaprolactone (PCL) segment in the poly(NIPAAm) hydrogels. The properties of the gels crosslinked with PCLdA were compared with those crosslinked with N, N′‐methylenebisacrylamide (NMBA). The results showed that the critical gel transition temperatures (CGTT) of the gels crosslinked with PCLdA were lower than those of the gels crosslinked with NMBA due to the hydrophobicity of the PCL segment. The results also showed that the gels crosslinked with PCLdA had higher mechanical strength and crosslinking density than those gels crosslinked with NMBA. Comparing the porous gels with nonporous gels, the results showed that the swelling ratio and CGTT of the porous gels were higher than those of the nonporous gels, and the transition temperature curve was smoother for the porous gels. The porous gels also exhibited more rapid thermal response and faster degradation rates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A series of poly(acrylic acid) (PAA)–poly(vinyl alcoho) (PVA) semiinterpenetrating (SIPN) and interpenetrating (IPN) polymer network membranes were prepared by crosslinking PVA alone or by crosslinking both PVA and PAA. Glutaraldeyde and ethylene glycol were used as crosslinking agents for the PVA and PAA networks, respectively. The presence of PAA increases the permeability of the membranes while the presence of PVA improves their mechanical and film-forming properties. The mechanical properties of the membranes were investigated via tensile testing. These hydrophilic membranes are permselective to water from ethanol–water mixture and to ethanol from ethanol–benzene mixtures. The IPN membranes were employed for the former mixtures and the SPIN membranes for the latter, because the IPN ones provided too low permeation rates. The permeation rates and seperation factors were determined as functions of the IPN or SIPN composition, feed composition, and temperature. For the azeotropic ethanol–water mixture (95 wt % ethanol), the separation factor and permeation rate at 50°C of the PAA-PVA IPN membrane, containing 50 wt % PAA, were 50 and 260 g/m2h, respectively. For the ethanol–benzene mixture, the PAA–PVA SIPN membranes had separation factors between 1.4 and 1200 and permeation rates between 6 and 550 g/m2h, respectively, depending on the feed composition and temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
In these studies, hydrogels for wound dressings were made from a mixture of aloe vera and poly(vinyl alcohol) (PVA)/poly(N‐vinylpyrrolidone) (PVP) by freezing and thawing, γ‐Ray irradiation, or a two‐step process of freezing and thawing and γ‐ray irradiation. We examined the physical properties, including gelation, water absorptivity, gel strength, and degree of water evaporation, to evaluate the applicability of these hydrogels for wound dressings. The PVA:PVP ratio was 6:4, the dry weight of aloe vera was in the range 0.4–1.2 wt %, and the solid concentration of the PVA/PVP/aloe vera solution was 15 wt %. We used γ radiation doses of 25, 35, and 50 kGy to expose mixtures of PVA/PVP/aloe vera to evaluate the effect of radiation dose on the physical properties of the hydrogels. Gel content and gel strength increased as the concentration of aloe vera in the PVA/PVP/aloe vera gels decreased and as radiation dose increased and the number of freeze–thaw cycles was increased. The swelling degree was inversely proportional to the gel content and gel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1477–1485, 2003  相似文献   

12.
Poly(N‐isopropylacrylamide) (PNIPA)/silica composite hydrogels were prepared and the effects of the silica incorporation on the swelling and breaking characteristics of the hydrogels were investigated. To improve the dispersive property of silica in the PNIPA matrix via the formation of covalent bonds between the polymer and silica, vinyl groups were introduced in the silica by reacting it with a coupling agent, 3‐methacryloxypropyltrimethoxysilane. When unmodified silica was used as filler in the PNIPA‐composite hydrogel, the swelling ratio of the composite hydrogel below the critical gel transition temperature (CGTT) increased with increasing silica content. However, when the modified silica was used as the filler, the swelling ratio below CGTT decreased with increasing silica content because of the enhanced distribution and additional crosslinking. Above CGTT, the swelling ratios of the PNIPA/silica hydrogels were similar regardless of the silica modification. The gel breaking stress of the hydrogels increased with increasing silica content, and this enhancement was larger for the modified silica hydrogel. Scanning electron microscopy images showed that the modified silica particles were distributed more evenly in the PNIPA matrix than the unmodified ones were and that the size of cell‐like structure of the hydrogel decreased with increasing modified silica content. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

13.
Thermoresponsive hydrogels based on poly(methyl 2‐isobutyramidoacrylate) (PMIBA) were prepared by free‐radical crosslinking polymerization of the corresponding monomer using N,N′‐methylenebisacrylamide as a crosslinker. The PMIBA hydrogels showed a reversible temperature‐induced volume change with a volume phase transition temperature (VPTT) at 19°C, while they contained more than 60 wt % water even in the equilibrium deswollen state. When the external temperature was raised rapidly above the VPTT, the PMIBA gels shrank smoothly with time at a faster rate than conventional poly(N‐isopropylacrylamide) hydrogels of the same size. The fast and smooth deswelling response of the PMIBA gel is ascribed to its sponge‐like structure with 0.1–1 µm pore sizes formed in the deswollen state. The smooth deswelling response due to the macroporous structure resulted in high durability against repeated changes in the external temperature. The PMIBA gel showed little degradation in the swelling ability when subjected to 50 times of thermal cycling across the VPTT. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

14.
The tremendous reinforcing and pore‐stabilizing effect of in situ formed nanosilica in a highly porous temperature‐responsive poly(N‐isopropylacrylamide) (PNIPA) matrix is demonstrated. A very weakly crosslinked semi‐liquid hydrogel can be reinforced to the point that it displays a fast, extensive and nearly symmetric temperature‐responsiveness in combination with an acceptable modulus. In soft but solid porous PNIPA, only 0.6 wt% of the nanofiller is sufficient to stabilize the pores against collapse upon de‐swelling, thus enabling ultrafast responsiveness. A spectacular effect is achieved with dried porous PNIPA (matrix is glassy, Tg ≈ 140 °C), which in the case of optimal nanosilica amounts can re‐swell in only 3 min. The key importance of efficient hydrogen bridging between PNIPA and SiO2 is demonstrated by comparing in situ formed nanosilica with similarly sized commercial Ludox particles, the surface of which is saturated with ammonia (for stabilization). Synthesis parameters like the amount of crosslinker and of nanosilica were varied in a wide range, in order to achieve the fastest possible responsiveness of the hydrogels in combination with a high modulus. The porosity, nanosilica distribution, moduli, temperature‐dependent swelling as well as the swelling kinetics of the gels were determined as functions of contents of crosslinker and nanosilica. © 2017 Society of Chemical Industry  相似文献   

15.
Crosslinked poly(N-isopropylacrylamide) (PNIPA) gels with different crosslink densities in the form of rods and beads were prepared by free-radical crosslinking copolymerization. Solution and inverse suspension polymerization techniques were used for the gel synthesis. The gels were utilized to concentrate dilute aqueous solutions of penicillin G acylase (PGA), bovine serum albumin (BSA), and 6-aminopenicillanic acid (6-APA). The discontinuous volume transition at 34°C observed in the gel swelling was used as the basis of concentrating dilute aqueous protein solutions. PNIPA gels formed below 18°C were homogeneous, whereas those formed at higher temperatures exhibited heterogeneous structures. The water absorption capacity of PNIPA gels in the form of beads was much higher, and their rate of swelling was much faster than the rod-shaped PNIPA gels. It was also found that the polymerization techniques used significantly affect the properties of PNIPA gels. The separation efficiency decreased when the protein molecules PGA or BSA in the external solution were replaced with small-molecular-weight compounds, such as 6-APA. The protein separation efficiency by the gel beads increased to 100% after coating the bead surfaces with BSA. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 805–814, 1998  相似文献   

16.
pH and temperature responsive nanocomposite hydrogels were synthesized with sodium alginate (NaAlg), N‐isopropylacrylamide (NIPA), and nanoclay. The structure, morphology, thermal behavior, and swelling and deswelling behaviors of the hydrogels were studied. The NaAlgm/PNIPA/Clayn hydrogels revealed a highly porous structure in which the pore sizes decreased and the amount of pores increased with increasing the nanoclay content in the hydrogels. PNIPA retained its own characteristics regardless of the amount of NaAlg and nanoclay. The effect of pH and nanoclay content on the swelling and effect of temperature on the deswelling behavior were investigated. The equilibrium swelling ratios of the nanocomposite hydrogels increased with increasing the pH from 2 to 6. The maximum swelling was attained at pH 6. Deswelling increased with increasing the nanoclay content in the hydrogels. The hydrogels were found to be pH and temperature responsive. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43222.  相似文献   

17.
Reversible addition–fragmentation chain‐transfer polymerization was introduced to prepare a series of zwitterionic poly(hydroxyethyl methacrylate)‐g‐poly(sulfobetaine methacrylate) (PSBMA) hydrogels (HSGs) with different monomer feed ratios. Compared with PSBMA hydrogels, these hydrogels exhibited enhanced mechanical strengths. Then, the HSGs were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and swelling measurements. We found that the equilibrium swelling ratios, mechanical strengths, and drug‐release behaviors were significantly affected by the feed ratios of the gels. The hydrophilic tetracycline hydrochloride release results suggest that the hydrophilic drug release from the HSGs could be prolonged by the variation of the hydroxyethyl methacrylate amount in the gel networks. The bovine serum albumin adsorption data showed that the zwitterionic HSG with 18.2 wt % sulfobetaine methacrylate exhibited good protein‐resistance properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41041.  相似文献   

18.
This study develops a simple copolymerization/crosslinking technique to control the swelling and mechanical properties of hyaluronic acid‐based hydrogels. Because of the widespread acceptance of poly(ethylene glycol) in biomedical applications, functionalized oligomers of ethylene glycol (EG) were used as comonomers to crosslink methacrylated hyaluronic acid (MHA). The swelling degree, shear and elastic moduli, and fracture properties (stress and strain) of the gels were investigated as a function of the crosslinking oligomer length and reactive group(s). It was hypothesized that acrylated oligomers would increase the crosslink density of the gels through formation of kinetic chains by reducing the steric hindrances that otherwise may limit efficient crosslinking of hyaluronic acid into gels. Specifically, after crosslinking 13 wt % MHA (47% degree of methacrylation) with 0.06 mol % of (EG)n‐diacrylate, the swelling ratio of the MHA gel decreased from 27 to 15 g/g and the shear modulus increased from 140 to 270 kPa as n increased from 1 to 13 units. The length and functionality (i.e., acrylate vs. methacrylate) of the oligomer controlled the crosslink density of the gels. The significant changes in the gel properties obtained with the addition of low levels of the PEG comonomer show that this method allows precise tuning of the physical properties of hyaluronic acid (HA) gels to achieve desired target values for biomedical applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42009.  相似文献   

19.
The properties of poly(vinyl alcohol) (PVA) hydrogels containing saccharose were examined. The effect of the addition of saccharose to atactic PVA (α-PVA) gels on their melting temperatures was larger than that for syndiotacticity-rich PVA (s-PVA) gels and the melting temperature was above 100°C for α-PVA gels with saccharose contents of 60 wt %. However, the fusion enthalpy (ΔH) of the α-PVA gels was at most 100 kJ/mol. The release of solvent (water/saccharose) from gels in air decreased with an increase in the saccharose content and the equilibrium was achieved after standing for 20 days for the α-PVA and s-PVA gels with saccharose contents above 40 and 20 wt %, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
A crown ether derivative (4′-allyldibenzo-18-crown-6, CE) was covalently incorporated into the network of temperature sensitive poly(N-isopropylacrylamide) (PNIPA) hydrogels by copolymerization in a mixed solvent of water and tetrahydrofuran (H2O/THF). The poly(N-isopropylacrylamide-co-4′-allyldibenzo-18-crown-6) (poly(NIPA-co-CE)) hydrogels exhibited dramatically faster deswelling rates than normal PNIPA hydrogels at a temperature (50 °C) above their lower critical solution temperatures. The effect of the solvent component ratio in the mixed solvent during the copolymerization on the swelling properties of the poly(NIPA-co-CE) hydrogel was investigated. The thermosensitive poly(NIPA-co-CE) hydrogels have potential applications in the extraction of cations and separation of chiral drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号