首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《应用化工》2022,(9):2159-2163
以油田含油污泥为底物,构筑了不同pH的沉积型含油污泥微生物燃料电池(SMFC),分别采集不同pH(6.5,7.0,7.5,8.5,误差±0.2)的SMFC输出电压,并测定相应电池电动势、表观内阻、功率密度等,研究了pH值对SMFC体系产电及原油降解性能的影响,并采用气相-质谱联用仪(GC-MS)研究分析了弱碱环境下SMFC中正构烷烃组分的降解情况。结果表明,随着pH的增大,SMFC的输出电压、功率密度、电动势先增大后减小,表观内阻则先减小后增大,pH=7.5时,电压最高,功率密度和电动势最大,表观内阻最小;随着pH增大,含油污泥原油去除率先增大后减小,pH=7.5时,原油去除率最大。SMFC体系在弱碱性环境下(pH=7.5),其产电性能和原油降解性能最佳,主要是SMFC中的菌群可以提高对高碳数烷烃的降解速率,对偶数碳烷烃有较强的降解能力,而且具有降解类异戊二烯烷烃的能力。  相似文献   

2.
以油田含油污泥为底物,构筑了不同pH的沉积型含油污泥微生物燃料电池(SMFC),分别采集不同pH(6.5,7.0,7.5,8.5,误差±0.2)的SMFC输出电压,并测定相应电池电动势、表观内阻、功率密度等,研究了pH值对SMFC体系产电及原油降解性能的影响,并采用气相-质谱联用仪(GC-MS)研究分析了弱碱环境下SMFC中正构烷烃组分的降解情况。结果表明,随着pH的增大,SMFC的输出电压、功率密度、电动势先增大后减小,表观内阻则先减小后增大,pH=7.5时,电压最高,功率密度和电动势最大,表观内阻最小;随着pH增大,含油污泥原油去除率先增大后减小,pH=7.5时,原油去除率最大。SMFC体系在弱碱性环境下(pH=7.5),其产电性能和原油降解性能最佳,主要是SMFC中的菌群可以提高对高碳数烷烃的降解速率,对偶数碳烷烃有较强的降解能力,而且具有降解类异戊二烯烷烃的能力。  相似文献   

3.
微生物燃料电池处理晚期垃圾渗滤液的特性研究   总被引:1,自引:0,他引:1  
采用双室型微生物燃料电池(MFC)处理晚期垃圾渗滤液,考察了其产电性能及渗滤液处理效果。在外阻为1 000Ω,MFC中垃圾渗滤液的体积分数为20%时,其最大输出电压为660.6 mV,最大输出功率密度为2 182.0mW/m3。当体积分数升至100%,其最大输出电压为709.4 mV,最大输出功率密度为2 513.4 mW/m3,COD去除率约为70.4%。MFC运行期间,渗滤液中的氨氮一部分在阳极室中作为电子供体产电而被去除,另一部分从阳极室转移到阴极室,7 d内NH4+转移率达43%。与此同时,内阻从1 010Ω增加到2 000Ω,阳极液电导率从2.09×10-3S/cm下降到9.15×10-4S/cm。  相似文献   

4.
使用单室空气阴极微生物电池处理焦化废水,以电压、电流密度、功率密度、COD去除率、p H为考察指标,分别用铂、四氧化三铁、二氧化锰作阴极,对比其去除效率和产电能力。实验结果表明,铂阴极的产电能力和废水处理效果最好,开路电压最大值达到521.469 m V。当电流密度为2.4 A/m2时功率密度达到最大值0.195 W/m2,COD去除率为82.9%;二氧化锰阴极MFC效果次之,四氧化三铁阴极MFC的效果最差。  相似文献   

5.
《应用化工》2022,(2):402-406
构建了序批式A/O-MFC运行装置,以垃圾填埋场渗滤液为底物,考察A/O-MFC在不同浓度渗滤液作为阴极液的产电性能和污染物去除效果。结果表明,MFC两极的COD、氨氮的去除率均随阴极渗滤液浓度的增加而增大,且阴极室去除效果明显好于阳极室。MFC输出电压随阴极渗滤液浓度的增加而增大,高效脉冲波动幅度随渗滤液浓度增加而减缓。最大功率密度分别0.030,0.096,0.129 W/M2。第3阶段功率密度分别是前两个阶段4.30,1.34倍。可见,微生物燃料电池产电能力随阴极渗滤液浓度的增加而增大,处理高浓度垃圾渗滤液的A/O-MFC的除污-产电性能最好。因此,以垃圾填埋场的渗滤液作为底物运行A/O-MFC具有可行性。  相似文献   

6.
构建了序批式A/O-MFC运行装置,以垃圾填埋场渗滤液为底物,考察A/O-MFC在不同浓度渗滤液作为阴极液的产电性能和污染物去除效果。结果表明,MFC两极的COD、氨氮的去除率均随阴极渗滤液浓度的增加而增大,且阴极室去除效果明显好于阳极室。MFC输出电压随阴极渗滤液浓度的增加而增大,高效脉冲波动幅度随渗滤液浓度增加而减缓。最大功率密度分别0.030,0.096,0.129 W/M~2。第3阶段功率密度分别是前两个阶段4.30,1.34倍。可见,微生物燃料电池产电能力随阴极渗滤液浓度的增加而增大,处理高浓度垃圾渗滤液的A/O-MFC的除污-产电性能最好。因此,以垃圾填埋场的渗滤液作为底物运行A/O-MFC具有可行性。  相似文献   

7.
在高650mm、有效容积1280m L的三级串联液固厌氧流化床单室无膜空气阴极微生物燃料电池(MFCs)中,研究了啤酒废水处理及产电性能。结果表明:串联后输出电压等于三个单级电池的电压之和,约为623.5m V,最大功率密度为0.340m W/m2。该体系内阻为21667Ω。恒温条件下(35℃),处理10天后,啤酒废水COD由初始的2025mg/L降至107.4mg/L,COD去除率达94.69%。通过液相色谱分析处理前后啤酒废水中的有机物质含量的结果可知,MFCs能够充分降解啤酒废水中的葡萄糖、木糖和乙酸等有机物质。  相似文献   

8.
以沼液为原料的微生物燃料电池产电降解特性   总被引:3,自引:2,他引:1       下载免费PDF全文
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kW,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

9.
以厌氧活性污泥为接种液构建微生物燃料电池(MFC),检测了运行第1周期前后电池的理化性质及菌群变化情况。结果表明,MFC启动后产电性能良好,外接1000 Ω电阻时输出电压可达0.62 V,功率密度达1247 mW/m2,内阻为143 Ω, 化学需氧量(COD)去除率达63.6%;高通量测序结果显示,MFC菌群与原始接种厌氧活性污泥菌群相比变化较明显,菌群多样性指数降低,优势菌门硬壁菌门(Firmicutes)和变形菌门(Proteobacteria)为产电菌群常见门,与MFC产电能力直接相关的克雷伯氏菌属(Klebsiella)富集并成为优势菌属,相对丰度达16.73%。  相似文献   

10.
采用正透膜为中间隔膜,构建双室正渗透微生物燃料电池,同时以垃圾渗透液为阳极液,考察了Os MFC处理垃圾渗滤液的产能和降污性能。结果表明,稳定运行后,Os MFC的表观内阻为236.750Ω,最大面积功率密度为0.442 W/m~2,其相对应的电流密度为1.663 A/m~2。MFC的表观内阻为247.625Ω,最大面积功率密度为0.406 W/m~2,其相对应的电流密度为1.594 A/m2,Os MFC与MFC相比具有更好的产电性能。Os MFC使p H更加稳定,从而能够有效地降低过电位。Os MFC的平均水通量为0.979 L/(m~2·h)。Os MFC对垃圾渗滤液中TOC、氨氮、TN和TP的去除率都达到70%以上。研究结果为垃圾渗滤液的处理和资源化提供技术参考。  相似文献   

11.
微生物燃料电池产电的影响因素   总被引:11,自引:1,他引:10  
以输出功率和内阻为评价指标,考察了直接微生物燃料电池在间歇运行过程中pH值、底物浓度、电极间距和添加电解质对产电性能的影响. 结果表明,pH值对输出功率影响较大,最佳值为7.5;输出功率随底物浓度的增大而增大.减小电极间距能有效降低电池内阻,提高输出功率,当电极间距为2 cm时,最大功率密度为700 mW/m2,内阻为80 W,库仑效率为7.7%. 磷酸盐缓冲溶液作为电解质对功率提高的效果优于NaCl,其添加量为100 mmol/L时,最大功率密度达922 mW/m2,内阻为70 W,库仑效率为11.5%.  相似文献   

12.
在不排泥条件下,膜生物反应器(MBR)内的污泥浓度MLSS和MLVSS都随时间不断累积,而反映污泥活性的MLVSS/MLSS则不断减少。研究中发现,MLSS对MBR运行效果影响显著:TN的去除率随污泥浓度增加而增加,而COD的去除率随MLSS的增加先降后升,TP的去除率则先升后降,且二者均在污泥浓度6500 mg/L时达到极值,NH3-N的去除效果则随着污泥负荷的增加呈降低趋势。  相似文献   

13.
为解决沉积型微生物燃料电池(SMFC)因较低的产电性能限制其应用的问题,通过向景观水底泥中添加还原铁粉,探究其对SMFC的强化效能,和对景观水体的修复效果。结果表明,空白组TOC去除率为46.22%,投加还原铁粉可将水体中TOC的去除率增加至50.20%~72.11%;同时提高SMFC的产电性能,还原铁粉投加量在20 g/L和100 g/L时添加还原铁粉输出功率密度较大,最大功率密度可从26.2 mW/m2提升到79 mW/m~2;阳极电势随还原铁粉投加量增加而降低,阳极电势最低为-0.533 V。电池运行60 d后的Fe~(2+)含量不会超出GB 3838-2002中集中式生活饮用水地表水的限值规定。鉴于其成本优势,具有较高的应用价值。  相似文献   

14.
牟春霞  王琳  王丽 《现代化工》2022,(6):106-111
利用人工湿地型微生物燃料电池(CW-MFC)处理六价铬[Cr(Ⅵ)]废水可实现同步产电。考察了不同电极间距下COD质量浓度、Cr(Ⅵ)质量浓度及水力停留时间(HRT)对处理含铬废水及同步产电的影响。结果表明,随着COD和Cr(Ⅵ)质量浓度的增大,CW-MFC的电压先增大后减小。电极间距越小,欧姆电阻越小,但当电极间距为10 cm时系统的输出电压和功率密度最大,同时COD和Cr(Ⅵ)的去除率最高。随着HRT的延长,产电性能和污水处理能力先增大后减小。电极间距为10 cm时,最大功率密度和COD最高去除率分别458.24 mW/m3和92.50%(HRT为2 d),Cr(Ⅵ)最高去除率为92.96%(HRT为3 d)。  相似文献   

15.
直接微生物燃料电池的影响因素   总被引:1,自引:0,他引:1  
以厌氧污泥作为初始接种体,构建了一个直接微生物燃料电池,并经过160h的驯化,获得最大电压为590mV(1000Ω),并考察了不同底物和催化剂对电池性能的影响。结果表明,葡萄糖的最大功率密度(669mW/m2)要高于丁二酸的最大功率密度(235mW/m2)。通过比较电极电位,发现阳极电位随外电阻的变化较大,这主要是混合菌对不同底物的利用能力存在差异,可通过选择合适的产电菌来提高丁二酸产电的性能;并以锰作为阴极催化剂,其最大输出功率密度为147mW/m2,与铂作为阴极催化剂有一定的差距,还需进一步优化催化剂配比和制备工艺。  相似文献   

16.
复合菌剂用于膜生物反应器的污泥减量试验研究   总被引:1,自引:0,他引:1  
将复合菌技术与膜生物反应器结合处理校园生活废水,考察其污泥减量的效果.试验结果表明,反应器内MLSS的质量浓度由投加微生物前的9 000 mg·L~(-1)降到了投加后的5 000 mg·L~(-1),MLSS降低了44.4%,MLVSS同MLSS的变化基本一致;m(MLVSS)/m(MLSS)的变化不是很大,投加微生物后的m(MLVSS)/m(MLSS)较没投加前的平均0.83略有提高;而对COD、NH_4~+-N、TP的平均去除率分别由未投加时的93.78%,78.38%、75.56%增大到96.03%、88.25%、84.79%,所有指标都有所提高.研究表明,利用膜生物反应器(MBR)对泥水高效分离的特点,通过投加复合菌剂,抑制了不利菌和"无用菌"的生长,改善污泥性能和代谢活性,可以在实现MBR污泥零排放的同时,提高系统的去污能力.  相似文献   

17.
袁浩然  邓丽芳  王亚琢  陈勇  黄宏宇 《化工学报》2012,63(10):3236-3242
在实际生产生活中,城市垃圾焚烧或热解处置前一般需经过7~10 d的堆放预处理,预处理可去除垃圾中部分水分、提高垃圾热值,对于垃圾处理质量、热能回收、污染物排放等有着重要的影响。因此,本实验详细跟踪了城市垃圾预处理条件如堆放温度、堆放时间等对城市垃圾含水率、渗滤液产生量和渗滤液组分的影响,并进一步考察了其对渗滤液微生物燃料电池处理效果的影响。垃圾堆放温度实验结果显示,当垃圾堆放于40℃时效果最佳,此时垃圾减重率适中,所得的渗滤液中B/C比约为0.31、氨氮浓度约为1560 mg·L-1,适宜生化处理。此条件下所得的渗滤液经MFC处理时电池可获得0.29 V的输出电压,且经7 d处理后渗滤液中COD、氨氮去除率可分别达66.2%和87.2%。随后,在最佳堆放温度下进一步考察堆放时间的影响。结果显示,在最佳堆放温度40℃下,垃圾堆放6 d后所得的渗滤液组分最易于生化处理,其B/C比约为0.32、氨氮浓度约为1520 mg·L-1,经MFC处理时电池可获得0.29 V的输出电压,且经7 d处理后渗滤液中COD、氨氮的去除率分别为62.7%、87.6%。综上所述,40℃下堆放6 d是城市垃圾焚烧或热解处置预处理的最佳条件,此条件下,垃圾减重率和渗滤液产生量适中,且所得渗滤液可生化性较强,适合用于MFC产电处理。  相似文献   

18.
以芦苇为湿地植物构建微生物燃料电池-人工湿地耦合系统(MFC-CW),研究进水COD、水力停留时间(HRT)及阴极曝气量对MFC-CW产电和污水净化性能的影响。结果表明:MFC-CW系统经驯化后能够稳定运行,在净化污水的同时产电。随着进水COD的增大,MFC-CW系统的输出电压及COD去除率均先增大后减小,在COD为200 mg/L时系统产电量最大,为294 m V;COD为300 mg/L时系统COD去除率最大,为89.4%。随着HRT的增大,系统输出电压先增大后减小,在HRT为3 d时达到最大,为280 m V;系统COD去除率先增大后趋于平稳,HRT为3 d时去除率最高,为86%。系统输出电压及COD去除率随阴极曝气量的增大而增大,但其增长的速率逐渐减小。选择最适阴极曝气量时需要综合考虑输出电压、污水净化效果及经济成本。综合考虑各因素,优选0.075 m~3/h为最佳曝气量。  相似文献   

19.
郭欢  徐平平  赵月琴 《水处理技术》2024,(3):113-116+121
为了探究好氧颗粒污泥处理锅炉废水的可行性,以活性污泥为接种污泥,构建了好氧颗粒污泥反应体系,以预处理后的锅炉废水和颗粒污泥为分析对象,探究了颗粒污泥处理锅炉废水过程中污泥特征的变化规律,分析了颗粒污泥对锅炉废水营养盐的去除特征。结果表明,颗粒污泥内混合液总固体(MLSS)不断升高,稳定运行时MLSS浓度高达5.2~5.7 g/L,MLVSS/MLSS约在0.71~0.73,颗粒污泥沉降性能好,SVI30在41~53 mL/g波动。锅炉废水的处理提高了颗粒污泥胞外聚合物内蛋白质(PN)的含量,稳定时期PN含量在88.5~89.2 mg/g,约是初始值的1.34倍。颗粒污泥对锅炉废水中营养盐具有良好的去除率,稳定时期,COD、氨氮及硫酸盐的去除率分别高达93.5%~95.2%、91.2%~91.6%及74.6%~79.8%。好氧颗粒污泥处理燃煤锅炉废水具有良好的可行性。  相似文献   

20.
以厌氧污泥为接种微生物构建H型双室微生物燃料电池,考察不同电极材料(碳纸和碳布)对微生物燃料电池(MFC)产电性能的影响。结果表明,采用碳布为电极材料的MFC启动更快,18 h达到稳定,但在稳定期采用碳纸为电极材料比采用碳布为电极材料的MFC电压高出20 m V左右。采用碳布电极材料的MFC在启动初期的最大功率密度为4. 7 m W/m~2,内阻为1 782Ω;采用碳纸电极材料的MFC在启动初期的最大功率密度为8. 5 m W/m~2,内阻为1 125Ω,且驯化结束后稳定期的电压(313 m V)比碳布电极材料的MFC(282 m V)高,故MFC电极材料采用碳纸的产电效果优于碳布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号