首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L(-1) DO) and fully aerobic (3.7 and 5.4 mg L(-1) DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.  相似文献   

2.
Two-stage membrane bioreactor (MBR) system was applied to the treatment of landfill leachate from a solid waste disposal site in Thailand. The first stage anoxic reactor was equipped with an inclined tube module for sludge separation. It was followed by an aerobic stage with a hollow fiber membrane module for solid liquid separation. Mixed liquor sludge from the aerobic reactor was re-circulated back to anoxic reactor in order to maintain constant mixed liquor suspended solids (MLSS) concentration in the aerobic reactor. The removal of micro-pollutants from landfill leachate along the treatment period of 300 days was monitored. The results indicated that two-stage MBRs could remove biochemical oxygen demand (BOD), chemical oxygen demand (COD) and NH(4)(+) by 97, 87 and 91% at steady operating condition. Meanwhile organic micro-pollutant removals were 50-76%. The removal efficiencies varied according to the hydrophobic characteristic of compounds but they were improved during long-term MBR operation without sludge discharge.  相似文献   

3.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

4.
The objective of this study was to characterize the mechanisms of the COD removal in the membrane bioreactor (MBR) process with powdered activated carbon (PAC) addition and to determine its optimal operation, for the removal of residual organic matters (ROM) from biologically treated swine wastewater. The MBR process with PAC showed higher removal efficiency of chemical oxygen demand (COD(Mn)) than that without PAC. When the average COD(Mn) concentration of the influent was 217 mg/L, the average COD(Mn) concentration of the permeate from the MBR with PAC was about 41.5 mg/L, indicating an approximate removal efficiency of 81%. On the other hand, the average COD(Mn) concentration of the permeate from the MBR without PAC was 172 mg/L. The PAC dosage estimated to obtain the above removal efficiency was about 0.74 g per litre of influent. Among the total residual organics removed by PAC-added MBR, 46.5% was removed by PAC adsorption, 20.8% by biodegradation, 4.4% by membrane separation, and 9.3% by enhanced microorganism activity. From these results, the MBR process with PAC was considered as a very useful treatment process for the reduction of COD(Mn) in biologically treated swine wastewater.  相似文献   

5.
Application of photosynthetic process could be highly efficient and surpass anaerobic treatment in releasing less greenhouse gas and odor while the biomass produced can be utilized. The combination of photosynthetic process with membrane separation is possibly effective for water reclamation and biomass production. In this study, cultivation of mixed culture photosynthetic bacteria from food processing wastewater was investigated in a sequencing batch reactor (SBR) and a membrane bioreactor (MBR) supplied with infrared light. Both photo-bioreactors were operated at a hydraulic retention time (HRT) of 10 days. Higher MLSS concentration achieved in the MBR through complete retention of biomass resulted in a slightly improved performance. When the system was operated with MLSS controlled by occasional sludge withdrawal, total biomass production of MBR and SBR photo-bioreactor was almost equal. However, 64.5% of total biomass production was washed out with the effluent in SBR system. Consequently, the higher biomass could be recovered for utilization in MBR.  相似文献   

6.
This work presents preliminary results for distillery wastewater treatment in a MBR equipped with filters prepared from waste fly ash. The system was fabricated locally and employed submerged membranes in the 2-8 microm pore-size range. Distillery wastewater, after anaerobic digestion, was used as the feed and the bioreactor was inoculated with sludge obtained from a local distillery unit. The MBR was operated for around 250 days. The wastewater quality was monitored in terms of COD (chemical oxygen demand), colour, phenol, and MLSS (mixed liquor suspended solids) concentration. An average COD and phenol removal of 36% and 60% respectively was obtained. The maximum suspended solids retention by the ash filter was as high as 98%. The results were encouraging and further trials are currently underway to improve the performance.  相似文献   

7.
Water sustainability is essential for meeting human needs for drinking water and sanitation in both developing and developed countries. Reuse, decentralization, and low energy consumption are key objectives to achieve sustainability in wastewater treatment. Consideration of these objectives has led to the development of new and tailored technologies in order to balance societal needs with the protection of natural systems. Membrane bioreactors (MBRs) are one such technology. In this investigation, a comparison of MBR performance is presented. Laboratory-scale submerged aerobic MBR (AMBR), anaerobic MBR (AnMBR), and attached-growth aerobic MBR (AtMBR) systems were evaluated for treating domestic wastewater under the same operating conditions. Long-term chemical oxygen demand (COD) and total organic carbon (TOC) monitoring showed greater than 80% removal in the three systems. The AnMBR system required three months of acclimation prior to steady operation, compared to one month for the aerobic systems. The AnMBR system exhibited a constant mixed liquor suspended solids concentration at an infinite solids retention time (i.e. no solids wasting), while the aerobic MBR systems produced approximately 0.25 g of biomass per gram of COD removed. This suggests a more economical solids management associated with the AnMBR system. Critical flux experiments were performed to evaluate fouling potential of the MBR systems. Results showed similar critical flux values between the AMBR and the AnMBR systems, while the AtMBR system showed relatively higher critical flux value. This result suggests a positive role of the attached-growth media in controlling membrane fouling in MBR systems.  相似文献   

8.
A submerged flat metal MBR (membrane bioreactor) was used to treat synthetic domestic sewage in this study. The experiment was continued for 270 days and ran under two modes as AMBR (aerobic membrane bioreactor) and A/O-MBR (anoxic/aerobic membrane bioreactor) at a permeate flux of 0.4-1 m3/(m2 d). PVA (polyvinyl alcohol) gel beads were added to the aeration tank with a volume ratio of 10% at the end of the A/O-MBR mode. The mean COD and TN removal efficiencies achieved 96.69 and 32.12% under the AMBR mode, and those were 92.17 and 72.44% under the A/O-MBR mode, respectively. SND (simultaneous nitrification and denitrification) occurred at high MLSS (mixed liquor suspended solids) concentration. The metal membranes reduced effluent COD during filtration. The system ran stably for 115 days at a permeate flux of 0.8-1 m3/(m2 d) without changing membranes under the AMBR mode, but the membrane filterability decreased gradually under high MLSS or A/O-MBR mode, and the addition of PVA worsened the membrane filterability on the contrary. PSD (particle size distribution) and sludge fractions had evident influence on membrane fouling. The main fouling mechanism was cake formation under the AMBR mode, and that was pore blocking under the A/O-MBR mode.  相似文献   

9.
For membrane bioreactors (MBR) with enhanced nutrients removal, rather complex recirculation schemes based on the biological requirements are commonly recommended. The aim of this work was to evaluate other recirculation options. For a laboratory scale MBR, four different recirculation schemes were tested. The MBR was operated with COD degradation, nitrification, post-denitrification without carbon dosing and biological phosphorus removal. For all configurations, efficient COD, nitrogen and phosphorus removal could be achieved. There were no big differences in elimination efficiency between the configurations (COD elimination: 96.6-97.9%, nitrogen removal: 89.7-92.1% and phosphorus removal: 97.4-99.4%). Changes in the degradation, release and uptake rates were levelled out by the changes in contact time and biomass distribution. With relatively constant outflow concentrations, different configurations are still interesting with regard to oxygen consumption, simplicity of plant operation or support of certain degradation pathways such as biological phosphorus removal or denitrification.  相似文献   

10.
Sludge characteristics of a submerged membrane bioreactor (MBR) and an activated sludge process (AS) were compared, during a first phase at the same operating conditions (low MLSS and conventional SRT) and in a second phase with a high sludge retention time (SRT) in the membrane bioreactor. During the first phase, a bimodal flocs size distribution was observed in the MBR with simultaneously a macro-flocs population (240 microm) bigger than the flocs of activated sludge due to the absence of recirculating pump, and also more microflocs (1 to 15 microm) and free suspended cells retained by the membrane. It is shown that the membrane leads to an accumulation of proteins and polysaccharides in the sludge supernatant which is probably responsible for the high fouling propensity of the sludge during the starting period of MBR. These compounds are partially degraded after 50 to 60 days of operation. In the first phase respirometric experiments didn't demonstrate a significant difference in the maximal removal rates of either MBR or AS biomass (with excess substrate), except in the dynamic period during which the membrane retention gave an advantage by increasing the biomass activity. On the other hand, the respirometry shows that the half saturation constant for nitrification was significantly higher in the MBR process, suggesting higher substrate transfer limitation. During the last phase, it is shown that an increase of SRT from 9 to 106 days leads to a diminution of average macro-flocs size in the MBR from about 240 to 70 microm. With the SRT increase, modification in the organic compounds is also observed (proteins, polysaccharides and COD) in the sludge supernatant. Increasing the SRT from 9 to 40 days seems to slightly reduce the level of organic compounds (probable biodegradation), but the concentrations increased when SRT changes from 40 days to 106 days (probable accumulation of non biodegradable compounds).  相似文献   

11.
A new membrane bioreactor with gravity drain for municipal wastewater treatment was tested and its operational factors were investigated in this study. These factors include pressure head, MLSS, aeration intensity (an air flow rate per unit floor area) and temperature. Results of batch experiments showed that a critical pressure head of the MBR was 0.85-1.5 m-H2O. At a pressure head of 0.85 m-H2O, statistical analysis of batch experiments showed that aeration intensity significantly affected membrane flux, and the MLSS had no impact on membrane flux under a temperature of 22.0 +/- 1.0 degrees C. Results of the long-term continuous experiment showed that temperature significantly affected membrane flux. The impact of temperature on membrane flux in this case was about 4-10 times of that analyzed by using a classical cake layer model. During this experiment, the average removal efficiencies of COD, BOD5 and NH4+-N were over 85%, 97% and 94%, respectively.  相似文献   

12.
This paper presents the design and operational performance data of an anaerobic/aerobic hybrid side-stream Membrane Bioreactor (MBR) process for treating paper mill effluent operated over a 6 month period. The paper mill effluent stream was characterized by a chemical oxygen demand (COD) range of between 1,600 and 4,400 mg/L and an average BOD of 2,400 mg/L. Despite large fluctuations in COD feed concentration, stable process performance was achieved. The anaerobic Expanded Granular Sludge Bed (EGSB) pre-treatment step effectively lowered the organic loading by 65 to 85%, thus lowering the MBR COD feed concentration to consistently below 750 mg/L. The overall MBR COD removal was consistent at an average of 96%, regardless of the effluent COD or changes in the hydraulic retention time (HRT) and organic loading rate (OLR). Combining a high-rate anaerobic pre-treatment EGSB with a Modified Ludzack-Ettinger (MLE) MBR process configuration produced a high quality permeate. Preliminary NF and RO results indicated an overall COD removal of around 97 and 98%, respectively.  相似文献   

13.
An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.  相似文献   

14.
A new sludge treatment process combining a high MLSS membrane bioreactor with sludge pretreatment techniques was studied in pilot-scale experiments. The membrane bioreactor (MBR) was adopted for high efficiency aerobic digestion. The combination of alkaline-ozone treatment of the mixed liquor in the MBR reactor accelerated the biodegradation process by enhancing biodegradability of the sludge. The hydraulic retention time (HRT) of the reactor was set as 3.1 days and the DO level was 1 mg/L on average. After 5 months of operation, the accumulative total solids reduction was more than 70%. Removal efficiency of volatile solids and non-volatile solids were 76% and 54%, respectively. It was found that a considerable portion of the non-volatile solids was dissolved into ions and then flushed out with the effluent. Also, about 41% and 28% of T-N and T-P in the raw sludge were removed although no biological nutrient removal process was adopted. The experiment was run smoothly without significant membrane fouling, even at the relatively high levels of MLSS concentration (11,000-25,000 mg/L). It is concluded that the newly proposed process can significantly increase the sludge reduction efficiency with much shorter retention times.  相似文献   

15.
Wine production is seasonal, and thus the wastewater flow and its chemical oxygen demand (COD) concentrations greatly vary during the vintage and non-vintage periods, as well as being dependant on the winemaking technologies used, e.g. red, white or special wines production. Due to this seasonal high variability in terms of organic matter load, the use of membrane biological reactors (MBR) could be suitable for the treatment of such wastewaters. MBR offers several benefits, such as rapid start up, good effluent quality, low footprint area, absence of voluminous secondary settler and its operation is not affected by the settling properties of the sludge. A pilot scale hollow fibre MBR system of 220 L was fed by adequately diluting white wine with tap water, simulating wastewaters generated in wineries. The COD in the influent ranged between 1,000 and 4,000 mg/L. In less than 10 days after the start up, the system showed a good COD removal efficiency. The COD elimination percentage was always higher than 97% regardless of the organic loading rate (OLR) applied (0.5-2.2 kg COD/m3 d), with COD concentrations in the effluent ranging between 20 and 100 mg/L. Although the biomass concentration in the reactor increased from 0.5 to 8.6 g VSS/L, the suspended solids concentration in the effluent was negligible. Apparent biomass yield was estimated in 0.14 g VSS/g COD.  相似文献   

16.
Experiments have been carried out to get an understanding of the effect of DO, C/N ratio and pH on the performance of a bench scale membrane bioreactor (MBR) in simultaneous nitrification and denitrification. It was found that under the conditions of MLSS in the range of 8000-9000 mg/L and temperature of water in the MBR of 24 degrees C, influent COD and NH3-N in the range of 523-700 mg/L and 17.24-24 mg/L respectively, the removals of COD, NH3-N and TN were 98%, 99% and 60%; 96.5%, 0,98% and 75%; 96%, 95% and 92%; 90%,70% and 60% respectively at DO of 6, 3, 1 and 0.5 mg/L. It was also found that the changes in C/N ratio and pH in a certain range have a slight effect on COD removal but have significant influence on the removal of NH3-N and TN. The results showed that only under the conditions that each ecological factor was maintained relatively steadily, simultaneous nitrification and de-nitrification proceeded smoothly. It was found that when C/N ratio was 30, the influent pH 7.2, the temperature of water in MBR 24 degrees C and DO 1 mg/L, as optimum conditions, the removals of COD, NH3-N and TN were 96%, 95% and 92% respectively. In addition, mechanism research on simultaneous nitrification and de-nitrification in MBR has been conducted as well.  相似文献   

17.
This paper deals with the performance of hybrid membrane bioreactor (MBR) combining the precoagulation/sedimentation and membrane bioreactor. The hybrid MBR not only produces the treated water with excellent permeate quality but also shows much lower membrane fouling than the conventional MBR. It may come from its extremely low F/M ratio to maintain the low viscosity even in the high MLSS concentration range of about 20,000 mg/L. Some results of microbial community analysis in MBRs was conducted to demonstrate the other reason for its lower membrane fouling. Hybrid MBR has a high potential to be used for the recycling use of the municipal wastewater. Coagulated sludge produced in the hybrid MBR is a promising phosphorus resource. This paper also contains a recent progress of phosphorus recovery technology, which uses a new phosphoric acids absorbent, i.e. the hexagonal mesostructured zirconium sulfate (ZS). The ZS has the extremely high adsorption capacity of phosphoric acids through anion exchange. The adsorbed phosphoric acids are released from the ZS in a high pH range of about 13.  相似文献   

18.
The use of immersed membranes for solid-liquid separation in biological nutrient removal activated sludge (BNRAS) systems was investigated at lab scale. Two laboratory-scale BNR activated sludge systems were run in parallel, one a MBR system and the other a conventional system with secondary settling tanks. Both systems were in 3 reactor anaerobic, anoxic, aerobic UCT configurations. The systems were set up to have, as far as possible, identical design parameters such as reactor mass fractions, recycles and sludge age. Differences were the influent flow and total reactor volumes, and the higher reactor concentrations in the MBR system. The performances of the two systems were extensively monitored and compared to identify and quantify the influence of the membranes on system response.The MBR UCT system exhibited COD, FSA, TKN, TP and TSS removals that were consistently equivalent or superior to the conventional system. Better P removal in the MBR was attributed to lower observed P uptake in the anoxic zone. High nitrate loads to the anoxic reactor appeared to be the determining factor in stimulating P uptake.The MBR UCT system had a greater sludge production than the conventional system. This was partly attributable to the retention of all solids in the MBR reactor. For steady state design this increase is accommodated by increasing the influent unbiodegradable particulate COD fraction. Additionally an attempt was made to determine the Alpha values in the oxygen transfer rate.This paper briefly summarises and compares the results from both systems, and the conclusions that can be drawn from these results.  相似文献   

19.
Shortcut nitrification has been successfully applied in a laboratory scale nitrification-denitrification process consisting of an up-flow anaerobic sludge blanket (UASB) and an aerobic membrane bioreactor (MBR) in treating synthetic and municipal wastewater to simultaneously remove organic carbon and nitrogen. For the treatment of synthetic wastewater, the combined system exhibited a high TOC removal of 98% with a steady ammonia removal efficiency of about 98% in the MBR and a total nitrogen (TN) removal efficiency of 90%. In treating municipal wastewater, due to its low COD concentration, removal efficiencies of TOC, ammonia and TN were 70%, 98% and 60%, respectively. The biogas production was around 76.4 L/m3 wastewater when treating synthetic wastewater. However, little biogas was produced when treating municipal wastewater which was the result of low organic carbon loading to the UASB. Energy analysis has demonstrated that this novel shortcut nitrification process could consume less energy than a conventional process and have the potential of bio-energy generation via biogas production thus helping to achieve a more favorable energy balance.  相似文献   

20.
In this study, the impact of sludge retention time (SRT) on sludge characteristics and microbial community and the effect on membrane fouling in membrane bioreactor (MBR) was investigated. The results show that MBR with longer SRT has less fouling propensity, in agreement with other studies, despite the fact that the MBR with longer SRT contained higher MLSS and smaller particle size. However, much more soluble microbial products (SMPs) were released in MBR with shorter SRT. More slime on the membrane surface was observed in MBR with shorter SRT while sludge cakes formed on the membrane surface in MBR with longer SRT. The results show that SMP contributes to the severe fouling observed in MBR with shorter SRT, which is in agreement with other studies showing that SMPs were the major foulants in MBR. Under different SRTs of operation, the bacterial community structures of the sludge obtained by use of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were almost identical, but those on the membrane surface differed substantially. It suggests that, although SRT has impact on sludge characteristics, it doesn't affect the microbial community in the suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号