首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long term performance of mediator-less and membrane-less microbial fuel cell (ML-MFC) was evaluated for treatment of synthetic and actual sewage and electricity harvesting. The anode chamber of ML-MFC was inoculated with pre-heated mixed anaerobic sludge collected from a septic tank. The ML-MFC was operated by feeding synthetic wastewater for first 244 days, under different organic loading rates, and later with actual sewage for next 30 days. Maximum chemical oxygen demand (COD) removal efficiency of 91.4% and 82.7% was achieved while treating synthetic wastewater and actual sewage, respectively. Maximum current of 0.33 mA and 0.17 mA was produced during synthetic and actual sewage treatment, respectively. Maximum power density of 6.73 mW/m(2) (13.65 mW/m(3)) and maximum current density of 70.74 mA/m(2) was obtained in this membrane-less MFC with successful organic matter removal from wastewater.  相似文献   

2.
Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.  相似文献   

3.
Odor emissions and sludge disposals have become most challenging issues in many sludge treatment plants, and separate chemical oxidation processes have been commonly employed for these problems. It is, therefore, necessary to develop a combined process that simultaneously reduces the odor emissions and the amount of waste sludge. In this study, a non-thermal plasma reactor using a dielectric barrier discharge type was employed to treat a gas stream contaminated with 10 ppm(v) of H(2)S, and then the ozone-laden gas stream was supplied to a sludge stabilizer to reduce the organic constituents. The specific energy input to the plasma was varied to investigate the performance of the combined process. When the specific energy inputs were 200, 260, and 360 J/L, the rates of ozone generation from the plasma reactor were 0.036, 0.070, 0.144 g-O(3)/h, respectively. At these experimental conditions, the removal efficiencies of H(2)S were 60, 75, and >99%, and total chemical oxygen demand (TCOD) reduction efficiencies of 33, 61 and 67% were observed. In addition, a soluble organic fraction of the sludge increased at ratios of 1.9, 8.9, and 10.7%, respectively. Consequently, the combined process effectively and simultaneously reduced the odor compounds as well as the organic constituents and particles in the waste sludge.  相似文献   

4.
Aerobic granular sludge grown in a sequential batch reactor was proposed as an alternative to anaerobic processes for organic matter and nitrogen removal from swine slurry. Aerobic granulation was achieved with this wastewater after few days from start-up. On day 140 of operation, the granular properties were: 5 mm of average diameter, SVI of 32 mL (g VSS)(-1) and density around 55 g VSS (L(granule))(-1). Organic matter removal efficiencies up to 87% and nitrogen removal efficiencies up to 70% were achieved during the treatment of organic and nitrogen loading rates (OLR and NLR) of 4.4 kg COD m(-3) d(-1) and of 0.83 kg N m(-3) d(-1), respectively. However, nitrogen removal processes were negatively affected when applied OLR was 7.0 kg COD m(-3) d(-1) and NLR was 1.26 kg N m(-3) d(-1). The operational cycle of the reactor was modified by reducing the volumetric exchange ratio from 50 to 6% in order to be able to treat the raw slurry without dilution.  相似文献   

5.
This paper presents the experiments carried out in a hybrid sequencing batch reactor (HSBR), used for biological treatment of sewage. The HSBR was built in a cylindrical shape and made of stainless steel, with a volume of 1.42 m3. Besides the biomass in suspension, the reactor also carried fixed biomass (hybrid process), adhered in the support material. This consisted of a nylon net disposed in a grille for biofilm biomass adhesion. The reactor worked fully automated in operational cycles of maximum 8 hours each, presenting the following phases: filling, anoxic, aerobic, settle and draw of treated effluent, with 3 fillings per cycle. Increasing organic loads (0.14 to 0.51 kg TCOD/m3 day) and ammonium loads (0.002 to 0.006 kg NH4-N/m3.day) were tested. We monitored the reactor's performance by measuring the liquid phase (COD, pH, temperature, DO, nitrogen and phosphorus) during the cycles and by measuring the sludge through respirometric tests. The results obtained demonstrated TCOD removal efficiency between 73 and 96%, and ammonium removal efficiency between 50 and 99%. At the end of the cycles, the effluent presented ammonium concentration <20 mg/L, meeting the Brazilian environmental legislation standards (CONAMA 357/2005) regarding discharges into the water bodies. Respirometric tests showed biomass dependency on FCOD concentrations. Results have demonstrated the potential of this type of reactor for decentralized treatment of domestic wastewater.  相似文献   

6.
Utilization of dried sludge for making ceramsite.   总被引:1,自引:0,他引:1  
Dried sludge as additive for making ceramsite is a new effective approach for disposal of sludge. In this study sewage sludge, water glass and clay were chosen as the components, the optimal ratio of the components and the most appropriate conditions were obtained. The functions of primary components in the sintering process, porosity formation mechanism and solid phase reaction also have been discussed. The optimized process parameters were shown as follows: the ratio of dried sludge/clay (wt%) was 33%, ratio of adherent /clay (wt%) was 15%, sintering temperature was 1000 degrees C, sintering time was 10 min. Bulk density was 582 kg m(-3), particle density was 1,033 kg m(-3), water absorption was 9.5%, porosity was 43.7%. SEM, EDS, XRD and XRF analyses were also carried out. The results indicate that dried sludge as raw material is a good way for making ceramsite. Biological Aerated Filters (BAFs) with filter media of Guangzhou ceramsite, Jiangxi ceramsite, activated carbon and ceramsite (obtained in test) were selected to treat municipal wastewater. The average removal efficiencies of ceramsite (obtained in test) for turbidity, COD, SCOD and NH3-N were about 96.4%, 76.2%, 59.6% and 82.3% respectively and were higher than those of other ceramsites.  相似文献   

7.
In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.  相似文献   

8.
Hydrogen sulfide emission in sewers is associated with toxicity, corrosion, odor nuisance and a lot of costs. The possibility to inhibit sulfide generation by formaldehyde and its derivatives (paraformaldehyde and urea formaldehyde) has been evaluated under anaerobic conditions. The impact of formaldehyde on an activated sludge system and an appraisal of the economic aspects are also presented. The optimum dosage to inhibit sulfide generation in sewage was 12-19 mg L(-1) formaldehyde. The dosages of 32 mg L(-1) paraformaldehyde or 100 mg L(-1) urea formaldehyde were not capable of inhibiting sulfide generation in sewage. The impact of 19 mg L(-1) formaldehyde on activated sludge system was negligible in terms of COD removal, nitrification rate and oxygen uptake rate.  相似文献   

9.
In this study, feasibility of membrane separation for the removal of indigenous noroviruses (NVs) is evaluated. The indigenous NV gene was never detected from ultrafiltration (UF) permeates of sewage sludge and treated wastewater. Indigenous NV gene was also not detected from permeates of sewage sludge and treated wastewater by microfiltration (MF) with a pore size of 0.1 microm (MF0.1). Even though the pore size of MF (0.1 microm) was much larger than the diameter of virus particle (approximately 30-40nm), more than 4-log10 reduction value (LRV) at maximum was achieved by membrane separation with MF0.1. NV genes were often detected from permeates of sewage sludge and treated wastewater by MF with a pore size of 0.45 microm (MF0.45), although the maximum log10 reduction values were more than 3.59 for sewage sludge and more than 2.90 for treated wastewater. It is important to verify factors determining the removal efficiency of viruses with MF membranes.  相似文献   

10.
A "fourth generation" down-flow hanging sponge (DHS) Reactor has been developed and proposed as an improved variant of post-treatment system for UASB treating domestic wastewater. This paper evaluates the potential of the proposed combination of UASB and DHS as a sewage treatment system, especially for developing countries. A pilot-scale UASB (1.15 m3) and DHS (0.38 m3; volume of sponge) was installed in a municipal sewage treatment site and constantly monitored for 2 years. UASB was operated at an HRT of 6 h corresponding to an organic load of 2.15 kg-COD/m3 per day. Subsequently, the organic load in DHS was 2.35 kg-COD/m3 per day, operated at an HRT of 2 h. Organic removal by the whole system was satisfactory, accomplishing 96% of unfiltered BOD removal and 91% of unfiltered COD removal. However, nitrification decreased from 56% during the startup period to 28% afterwards. Investigation on DHS sludge was made by quantifying it and evaluating oxygen uptake rates with various substrates. Average concentration of trapped biomass was 26 g-VSS/L of sponge volume, increasing the SRT of the system to 100-125 d. Removal of coliforms obtained was 3-4 log10 with the final count of 10(3) to 10(4) MPN/100 ml in DHS effluent.  相似文献   

11.
The performance of dual chambered mediator-less microbial fuel cell (MFC) operated under batch mode was evaluated under different operating temperatures, ranging between 20 and 55 degrees C, with step increase in temperature of 5 degrees C. Synthetic wastewater with sucrose as carbon source having chemical oxygen demand (COD) of 519-555 mg/L was used in the study. Temperature was a crucial factor in the performance of MFCs for both COD removal and electricity production. The MFC demonstrated highest COD removal efficiency of 84% and power density normalized to the anode surface area of 34.38 mW/m2 at operating temperature of 40 degrees C. Higher VSS to SS ratio was observed at the operating temperature between 35 and 45 degrees C. Under different operating temperatures the observed sludge yield was in the range of 0.05 to 0.14 g VSS/g COD removed. The maximum Coulombic and energy efficiencies were obtained at 40 degrees C, with values of 7.39 and 13.14%, respectively. Internal resistance of the MFC decreased with increase in operating temperature. Maximum internal resistance of 1,150 omega was observed when the MFC was operated at 20 degrees C; whereas the minimum internal resistance (552 omega) was observed at 55 degrees C.  相似文献   

12.
Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.  相似文献   

13.
生物接触氧化流化床处理氨氮污水的实验研究   总被引:1,自引:0,他引:1  
为了提高生物接触氧化流化床处理氨氮污水的脱氮效果,采用生物接触氧化流化床在自然温度下处理人工配制模拟生活污水实验的方法,研究了氨氮污水脱氮处理的可行性、方法与效果。实验结果表明:氨氮被氧化成硝酸可由两类独立的细菌分别催化完成;反应的适宜温度为20~35℃;亚硝酸菌的最适pH值为7~8.5之间,硝酸菌为6~7.5;亚硝酸菌和硝酸菌溶解氧质量浓度在0.5 mg/L以上才能取得较好的硝化效果。反应器内填料粒径在10 mm左右有利于提高氨氮的去除效率;间歇式进水方式使活性污泥具有良好的沉降性,可为氨氮的去除提供良好的环境条件。  相似文献   

14.
An anaerobic hybrid reactor (UASB/Filter) was used for petrochemical wastewater treatment in mesophilic conditions. The seeded flocculent sludge from a UASB plant treating dairy wastewater, acclimatized to the petrochemical wastes in a two-stage operation. After start up, under steady-state conditions, experiments were conducted at OLRs of between 0.5 and 24 kg TCOD m(-3) d(-1), hydraulic retention times (HRT) of 4-48 h and up-flow velocities 0.021-0.25 mh(-1). Removal efficiencies in the range of 42-86% were achieved at feed TCOD concentrations of 1,000-4,000 mg L(-1). The results of reactor performance at different operational conditions and its relations are presented and discussed in this paper. Then, the obtained data are used for determination of kinetic models. The results showed that a second-order model and a modified Stover-Kincannon model were the most appropriate models for this reactor. Finally, the biogas production data were used for the determination of biogas production kinetics.  相似文献   

15.
Membranes can be installed in the clarifier (or aeration tank) of an existing activated sludge plant to enhance the biomass separation function of the system, thereby effectively overcoming any operating constraints associated with sludge settleability. The resulting upgraded plant can be operated at high biomass concentrations (10–20 gMLSS/L), leading to an increase in its treatment capacity. The membranes also ensure a treated water consistently free of suspended solids and a superior disinfection performance. The system offers an enhanced operating flexibility, and allows to operate at high sludge ages leading to a low excess sludge production.Such an immersed membrane activated sludge process (BIOSEP®) has been developed and applied to the treatment of raw sewage. When treating screened raw sewage with this process, with a sludge concentration of 15 gMLSS/L and a volumetric loading of 1.2 kgCOD/m3/d, a 96% COD reduction and a 95% Total Kjeldahl Nitrogen (TKN) reduction have been obtained. The disinfection performance of the system was over 6 Log removal for fecal coliforms. The resulting production of sludge was 0.20 kgMLSS/kgCOD.Two desk case studies are given for 900 m3/day upgraded plants. In one case, the primary objective was to increase the treatment efficiency and develop nutrient removal for the original plant, while in the other case the primary objective was to increase the capacity of the original 460 m3/day plant.  相似文献   

16.
In this study, a simple dual sludge process was developed for small sewage treatment. It is a hybrid system that consists of upflow multi-layer bioreactor (UMBR) as anaerobic and anoxic reactor with suspended growth microorganisms and post aerobic biofilm reactor with inclined plates. UMBR is a multifunction reactor that acts as primary sedimentation tank, anaerobic reactor, anoxic reactor, and thickener. The sludge blanket in the UMBR is maintained at a constant level by automatic control so that clear water (30 mg-SS/L) can flow into the post aerobic biofilm reactor. It leads to improving performance of the biofilm reactor due to preventing of excess microbial attachment on the media surface and no requirment for a large clarifier caused by low solid loading. The HRT in the UMBR and the aerobic biofilm reactor were about 5.8 h and 6.4 h, respectively. The temperature in the reactor during this study varied from 12.5 degrees C to 28.3 degrees C. The results obtained from this study show that effluent concentrations of TCOD, TBOD, SS, TN, and TP were 29.7 mg/L, 6.0 mg/L, 10.3 mg/L, 12.0 mg/L, and 1.8 mg/L, which corresponded to a removal efficiency of 92.7%, 96.4%, 96.4%, 74.9%, and 76.5%, respectively. The sludge biomass index (SBI) of the excess sludge in the UMBR was about 0.55, which means that the sludge in the UMBR was sufficiently stabilized and may not require further treatment prior to disposal.  相似文献   

17.
In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m(3)/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m(3)/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m(3)/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs: either using simultaneous nitrification/denitrification in all filters with recirculation introducing bottom aeration with full nitrification in some filters for storm treatment and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m(3) per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.  相似文献   

18.
Treatment of swine wastewater containing strong nitrogen was attempted in a full-scale SBR. The strongest swine wastewater was discharged from a slurry-type barn and called swine-slurry wastewater (SSW). Slightly weaker wastewater was produced from a scraper-type barn and called swine-urine wastewater (SUW). TCOD, NH4+-N and TSS in raw SSW were 23,000-72,000 mg/L, 3,500-6,000 mg/L and 17,000-50,000 mg/L, respectively. A whole cycle of SBR consists of 4 sub-cycles with anoxic period of 1 hr and aerobic period of 3 hr. The maximum loading rates of both digested-SSW and SUW were similar to 0.22 kg NH4+-N/m3/day whereas the maximum loading rates of raw SSW was up to 0.35 TN/m3/day on keeping the effluent quality of 60 TN mg/l. The VFAs portion of SCOD in raw SSW was about more than 60%. The VFAs in SUW and digested-SSW were about 22% and 15%, respectively. NH4+-N and PO4(3-)-P in SSW were removed efficiently compared to those in digested-SSW and DUW because SSW had high a C/N ratio and readily biodegradable organic. High concentration of organic was useful to enhance denitrification and P uptake. Also the amount of external carbon for denitrification was reduced to 5% and 10% of those for digested-SSW and SUW.  相似文献   

19.
A new nitrogen removal process (up-flow sludge blanket and aerobic filter, USB-AF) was proposed and tested with real sewage. In the USB reactor, the larger part of influent organic and nitrogen matters were removed, and ammonia was effectively oxidized in the subsequent aerobic filter. The role of the aerobic filter was to convert ammonia into nitrate, an electron acceptor that could convert soluble organic matters into volatile suspended solid (VSS) in the USB. The accumulated as well as influent VSS in the USB was finally degraded to fermented products that were another good carbon source for denitrification. Total COD, settleable COD and soluble COD in the raw sewage were 325, 80 and 140 mg/l, respectively. Most unsettleable COD as well as some SCOD in the influent was successfully removed in the USB. TCOD removal in the anoxic filter was by denitrification with the recycled nitrate. Low COD input to the aerobic filter could increase nitrification efficiency, reduce the start-up period and save the aeration energy in the USB-AF system. About 95% of ammonia was nitrified in the aerobic filter with no relation to the influent ammonia concentration. Denitrification efficiency of the recycled nitrate in the anoxic filter was about 85, 83, and 72% at recycle ratios of 100, 200, and 300%, respectively. T-N removal efficiency was 70% at recycle ratio of 300%.  相似文献   

20.
To reduce the residual organic matter and phosphorus contained in secondary effluent, a biofiltration system combined with electrocoagulation using bipolar iron electrodes was evaluated as a supplementary treatment to existing small-community sewage treatment. Based on the results of batch tests, bipolar electrocoagulation (BEC) was found to be more effective on phosphorus removal than monopolar electrocoagulation (MEC) but energy consumption was less in monopolar electrocoagulation. Optimum conditions of BEC to treat the secondary effluent were current density 15 A/m2, electrode spacing 1 cm and pH < 8. The removals of COD(Cr) and phosphorus by biofiltration system without BEC were 69.1% and 9.6%, respectively. However, biofiltration system combined with BEC showed 76.6-83.7% and 70.7-93.0% removal for COD(Cr) and phosphorus respectively. Extraordinary increase in phosphorus could be achieved by introducing electrocoagulation to biofiltration, and BEC/biofiltration system was evaluated to be applicable to existing small-community sewage treatment plants as a supplementary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号