首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers.The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model.The present model parameters include the integrated kinetic rate of deposition(k d)and the integrated kinetic rate of removal(k r),which have clear physical signi ficance.A seawater-fouling monitoring device was established to validate the model.The experimental data were well fitted to the model,and the parameters were obtained in different conditions.SEM and EDX analyses were performed after the experiments,and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hydroxide.The effects of surface temperature,flow velocity and surface free energy were assessed by the model and the experimental data.The results indicate that the seawater fouling becomes aggravated as the surface temperature increased in a certain range,and the seawater fouling resistance reduced as the flow velocity of seawater increased.Furthermore,the effect of the surface free energy of metals was analyzed,showing that the lower surface free energy mitigates the seawater fouling accumulation.  相似文献   

2.
Due to the high salt content of coal chemical wastewater, pipeline fouling often occurs during wastewater treatment. Fouling will cause the diameter of the pipe to shrink or even block, which is not conducive to the safe and stable operation of the wastewater treatment process. In this paper, the experimental device was designed by using FLUENT software and the fouling deposition mechanisms at different flow velocities and different positions in a 90 deg bend were studied. The experimental results show that when the flow velocity is between 0.2 m·s~(-1) and 0.3 m·s~(-1), the thickness of fouling layer was positively correlated with the flow velocity; when the flow velocity is equal to 0.4 m·s~(-1), the formation of fouling is the most serious; when the flow velocity is between 0.4 m·s~(-1) and 0.7 m·s~(-1), the thickness of fouling layer was negative correlation with the flow velocity; with the increase of inlet velocity, the time for sediment point to develop into sediment surface is shortened. The fouling layer is easy to fall off because of the large shear force on the wall surface of the inner bend of the 90° elbow, so the density of sediment at this position is high.  相似文献   

3.
MASS TRANSFER IN TURBULENT PULSATING FLOWS   总被引:1,自引:0,他引:1  
The effect of flow oscillation to the mass transfer between turbulent fluid and solid wall was investigatedby measuring the mass transfer rate between fluid and pipe wall with imposed oscillating flow usingelectrochemical method.The velocity and concentration field in the viscous sublayer which controls the mass trans-fer in such a process was simulated by a simple wave model of single harmonics.Experimental results confirmthat the flow oscillation has no influene on time averaged mass transfer rate,but the phase difference betweenphase averaged velocity field and concentration field shifts with the frequency of imposed oscillating flow.Numeri-cal analysis reveals that the concentration boundarylayer which is responsible for the mass transfer is muchthinner than the viscous sublayer which greatly weakens the influence of imposed oscillating flow on mass transfer.  相似文献   

4.
In order to study the effect of heat flux and inlet temperature on the fouling characteristics of nanoparticles, and to further reveal the fouling mechanism for insights into proper operating conditions, γ-Al_2O_3/water suspensions were chosen as the subject of this research. The particulate fouling characteristics of γ-Al_2O_3/water suspensions on the surface of stainless steel have been experimentally studied by varying the heat flux and the inlet temperature under single-phase flow and subcooled-flow boiling conditions. The results show that in the condition of single-phase flow, the asymptotic value of fouling resistance decreases with increasing of heat flux and inlet temperature. The asymptotic value of fouling resistance under single-phase flow is much higher than for the subcooled-flow boiling condition. The effect of heat flux on the fouling resistance under the two flow states has an inverse relationship, and there exists a minimum value of fouling resistance between these two states. For subcooled-flow boiling, the asymptotic value of fouling resistance increases with increasing heat flux, whereas the effect on fouling resistance by the inlet temperature is negligible.  相似文献   

5.
强制对流传热的换热表面结垢特性实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
An experimental study was conducted to investigate the fouling process of calcium carbonate on the heat transfer surface, during forced convective heat transfer. The dynamic monitoring apparatus of fouling resistance was set up for the present experiments. The fouling behavio(s were examined under different factors including fluid velocity, hardness,alkalinity, solution temperature, and wall temperature. Asymptotic fouling curves varying with time were obtained. The fouling rate and asymptotic fouling resistance increased and the induction periods were shortened with the fluid velocity decreasing, hardness andalkalinity increasing, and solution temperature and heat transfer surface temperature increasing. Thecomponents of fouling that formed on the heat transfer surface included crystallization fouling and particulate fouling. The thermal performance parameter of fouling,ρfhf, varied from 380 to 2600 kg·W·(m^4·K)^-1, increasing with growing velocity and decreasing solution temperature, hardness or alkalinity. Furthermore, the thermal conductivity of fouling, λf, varied from 1.7 to 2.2 W·(m·K)^-1 .  相似文献   

6.
The kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in tolu-ene was investigated using the single drop technique. The factors affecting the extraction rate include interfacial area between aqueous phase and organic phase, initial concentration of boric acid in aqueous phase, initial concen-tration of 2-ethyl-1,3-hexanediol in organic phase, and extraction temperature. The experimental results show that the extraction rate increases with the increase of the initial concentration of boric acid and 2-ethyl-1,3-hexanediol, interfacial area of two phases, and temperature. With the temperature-dependence study, it is showed that the ex-traction is a diffusion-controlled process. The kinetic equation is presented for pH 1.0 in the aqueous phase and temperature of 318 K.  相似文献   

7.
Lewis acidic 1-allyl-3-methylimidazolium chloroaluminate ionic liquids were used as promising elec-trolytes in the low-temperature electrodeposition of aluminium.Systematic studies on deposition process have been performed by cyclic voltammetry and chronoamperometry.The surface morphology and X-ray diffraction(XRD) patterns of deposits prepared at different experimental conditions were also investigated.It was shown that the nu-cleation density and growth rate of crystallites had a great effect on the structure of aluminium deposited.The crys-tallographic orientation of deposits was mainly influenced by temperature and current density.Smooth,dense and well adherent aluminium coatings were obtained on copper substrates at 10-25 mA?cm?2 and 313.2-353.2 K.More-over,the current efficiency of deposition and purity of aluminium have been significantly improved,demonstrating that the ionic liquids tested have a prospectful potential in electroplating and electrorefining of aluminium.  相似文献   

8.
The absorption process in acrylic acid production was water-intensive. The concentration of acrylic acid before distillation process was low, which induced to large amount of wastewater and enormous energy consumption.In this work, a new method was proposed to concentrate the side stream of absorption column and thus increase the concentration in bottom product by electrodialysis. The influence of operating conditions on concentration rate and specific energy consumption were investigated by a laboratory-scale device. When the voltage drop was 1 V·cP~(-1)(1 cP=10~(-3) Pa·s), flow velocity was 3 cm·s~(-1) and the temperature was 35 °C, the concentration rates of acrylic acid and acetic acid could be 203.3% and 156.6% in the continual-ED process. Based on the experimental data, the absorption process combined with ED was simulated, in which the diluted solution from ED process was used as spray water and the concentrated solution was feed back to the absorption column. The results shown that the flow rate of spray water was decreased by 37.1%, and the acrylic acid concentration at the bottom of the tower was increased by 4.56%. The ions exchange membranes before and after use 1200 h were tested by membrane surface morphology(scanning electron microscope), membrane chemical groups(infrared spectra), ion exchange capacity, and membrane area resistance, which indicated the membrane were stable in the acid system. This method provides new method for energy conservation and emission reduction in the traditional chemical industry.  相似文献   

9.
Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle. The dissolution experiments are carried out in an aqueous solution under a series of controlled temper-ature and pH. The selected sodium carbonate particles are al spherical with the same mass and diameter. The dissolution process is quantified with the measurement of particle diameter from dissolution images. The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle. Both surface reaction model and mass transport model are implemented to determine the dissolution mecha-nism and quantify the dissolution rate constant at each experimental condition. According to the fitting results with both two models, it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent. The dissolution process at the increasing pH is control ed by the chemical reaction on particle surface. Furthermore, the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the disso-lution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature, but decreases with the increasing of pH conversely.  相似文献   

10.
The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon~centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data.  相似文献   

11.
Electroless nickel–phosphorus (ENP) initial deposition rates from a glycine bath were studied by means of the quartz crystal microbalance (QCM) method. SEM and EDX methods were also used to study the morphology and elemental analysis of deposits. The effect of pH, temperature and the type of activation process on the initial deposition rate, surface morphology and surface elemental analysis of deposits were evaluated. Increasing the pH and the temperature cause an increase in deposition rate and a decrease in P content of deposits. The phosphorus content of obtained deposits in pre-plate method was greater than in sensitizer–activator process under the same conditions of the alloy deposition. The surface morphology depends on P content of deposits. By decreasing the P content of deposits, the grain size increases.  相似文献   

12.
The uncertainty about the fouling behaviour is one of the main reasons why plate and frame heat exchangers are not more widely installed in the chemical process industry and in power generating facilities. In the present investigation, the deposition of calcium sulphate in two different plate heat exchanger geometries was investigated. The deposition process was deliberately focused on crystallisation fouling through the installation of an in-line filter and the mode of preparation of the test solution. The investigated operating parameters were solution concentration, flow velocity, and bulk and surface temperatures. The heat exchangers were opened after each experiment to record the appearance and distribution of the deposits. The key result of this investigation is the strong correlation between the plate design and the tendency for deposit formation.  相似文献   

13.
次磷酸钠化学镀铜镍合金的研究   总被引:5,自引:0,他引:5  
研究了以次磷酸钠为还原剂的化学镀铜过程。分析了温度、pH、硫酸镍含量对化学镀铜沉积速率的影响及镀层的表面形貌和结构。结果表明,沉积速率随着镀液温度、pH和N i离子浓度的提高而增大。镀层组分含量和XRD实验结果表明镀层为铜镍合金,呈面心立方结构,晶面间距d与晶胞参数a与标准Cu-N i的相比略大。SEM实验表明,镀层表面形貌为团粒状,颗粒大小较不均匀。  相似文献   

14.
为探讨圆形楞涡流发生器结构和布置方式对换热面污垢的影响,采用数值模拟方法研究了布置圆形楞涡流发生器矩形通道内壁面CaSO4析晶污垢的沉积过程,同时计算并分析了入口流体温度为300 K、速度为0.5 m·s-1、浓度为3.0 g·L-1的CaSO4过饱和溶液下圆形楞涡流发生器的楞长、布置方式、半径的大小以及纵向间距等几何因素对表面污垢沉积的影响。结果表明:污垢热阻值随涡流发生器楞长增加先减小后增大,而且在(4/8)H楞长处出现最小值;随涡流发生器列间距增大而增大,当间距超过55 mm后污垢热阻值逐渐趋于光通道的污垢热阻值;随涡流发生器半径增大而减小;相同列间距、半径以及当楞长为(4/8)H时,顺排靠边布置时其污垢热阻值最小。  相似文献   

15.
射流电沉积技术具有特殊的定域性和材料特性,可用于磨损机械零件的修复,但因为边缘效应,沉积层的分布均匀性和质量需要改善。考察了沉积形貌、微观结构与射流电沉积电解液流速、喷嘴扫描速度及电流密度等关键参数的关系。结果表明,喷射流速在1~10 m/s范围,随着流速的增加沉积层表面质量及微观结构逐渐致密;扫描速度在1~15 mm/s范围,随着速度的加快沉积层表面质量及微观结构逐渐致密;电流密度在100~600 A/dm~2范围内,随着电流的增大沉积层表面质量及微观结构逐渐改善,晶粒尺寸逐渐增大。  相似文献   

16.
The accumulation of unwanted crystalline deposits (fouling) reduces the efficiency of heat exchanger considerably. In order to mitigate fouling, many measures have been taken including the use of low-energy surface and antifoulant. In this investigation, the CaCO3 fouling experiments in both cooling water and pool-boiling systems were performed, the induction period as well as the removal of fouling was studied, and the fouling morphology was also investigated by scanning electron microscopy and atomic force microscopy (AFM). Compared with the copper surface, the self-assembled monolayers low-energy surface can prolong the induction period of fouling in the cooling water system. The induction period increases with decreasing initial surface temperature and fluid velocity. When the heat flux is fixed in different experiments, an increase in the fluid velocity will result in a decrease in the initial surface temperature. Under this condition, owing to the interactional effects between surface temperature and fluid velocity, the induction period increases with increasing fluid velocity. The removal experiments were carried out both in the induction period and in the post-induction period. The results show that only in the induction period can the fouling resistance be reduced owing to the weaker adhesion strength of fouling. In the presence of antifoulant polyacrylic acid (PAA), the crystal forms are changed and the fractal dimensions of CaCO3 morphologies increase for both the cooling water and the pool-boiling systems. AFM images show that the steps are bunched for CaCO3 formed in the pool-boiling system, and in the presence of PAA, the step spacing is widened compared to the case in the absence of PAA.  相似文献   

17.
化学镀钴-镍-磷合金镀层沉积速度的探讨   总被引:5,自引:0,他引:5  
化学镀钴-镍-磷合金镀层具有良好的磁学性能,正日益受到人们的青睐。由于沉积速度往往对镀层性能产生很大影响,在此重点了影响化学镀钴-镍-磷合金镀层沉积速度的各因素。结果表明,提高镀液中金属离子总浓度及镍盐所占的比例,在PH为8 ̄10范围内加入适量的稳定剂及采用活性强的基材有利于化学镀钴-镍-磷合金镀层沉积速度的提高。  相似文献   

18.
The study of heat exchanger fouling using supersaturated calcium sulphate solutions has been widely reported. In this study fouling was investigated in a larger-scale heat exchange apparatus using stainless-steel pipe, and data were obtained at different flow rates, concentrations and temperature differences. The deposits were examined using a scanning electron microscope, X-ray diffraction and conventional photography. In a novel approach, wood pulp fibers were added to the fouling solution at various concentrations to mitigate fouling. Heat transfer enhancement above the solution-alone was observed initially and the onset of fouling delayed. When fouling eventually developed the final asymptotic level was lower than the fiber-free case for the experimental conditions specified. At a fiber concentration of 0.15% heat transfer augmentation occurred for 11 days. However, at 0.25% fiber concentration, heat transfer augmentation (no fouling) was sustained over the experimental duration of 45 days. It can be concluded that the service-life cycle of a heat exchanger can be prolonged with the addition of asymmetric, flexible, natural fibers. In this work it is argued that fibers modify the onset of deposition by boundary layer scavenging, and interact with turbulent eddies to reduce the rate of mass transfer of the foulant to the heated surface. When scale forms, the crystalline structure of the scale is interrupted by the fibers, which appear to roughen the heat transfer surface initially and increase the heat transfer coefficient. However, the scale deposit continues to build up very slowly, causing the thermal resistance to eventually override the turbulence augmented heat transfer effect of the fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号