首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Random particle motion in a turbulent and molecular velocity fluctuation field is considered. Using a spectral representation of the carrier-phase Eulerian velocity fluctuation correlations, a closed system of integral equations for calculating the carrier-phase velocity correlation along the particle trajectory and the particle Lagrangian velocity fluctuation correlation is obtained. Based on this system, the fluctuations of the particle parameters are analyzed. In the limiting case of a passive admixture, an estimate is found for the ratio of the integral Lagrangian and Eulerian time scales and the Kolmogorov constant for the Lagrangian structure function of the carrier-phase velocity fluctuations.  相似文献   

2.
Sedimentation of particles in an inclined vessel is predicted using a two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions allows a complete solution of sedimentation from a dilute mixture to close-pack. The solution scheme allows for distributions of types, sizes and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The MP-PIC solution method captures the physics of inclined sedimentation which includes the clarified fluid layer under the upper wall, a dense mixture layer above the bottom wall, and instabilities which produce waves at the clarified fluid and suspension interface. Measured and calculated sedimentation rates are in good agreement.  相似文献   

3.
In this work we study deposition of particles and droplets in non-rotating swirled turbulent pipe flow. We aim at verifying whether the capability of swirl to enhance particle separation from the core flow and the capability of turbulence to efficiently trap particles at the wall can co-exist to optimize collection efficiency in axial separators. We perform an Eulerian–Lagrangian study based on Direct Numerical Simulation (DNS) of turbulence, considering the effect of different swirl intensities on turbulence structures and on particle transfer at varying particle inertia. We show that, for suitably-chosen flow parameters, swirl may be superimposed to the base flow without disrupting near-wall turbulent structures and their regeneration mechanisms. We also quantify collection efficiency demonstrating for the first time that an optimal synergy between swirl and wall turbulence can be identified to promote separation of particles and droplets.  相似文献   

4.
A novel post-processing algorithm is proposed to correct statistical bias observed in the treatment of time series obtained by a phase Doppler anemometer (PDA) at flow locations with variable particle velocity and concentration. Extensive properties of each validated particle are weighted with their inverse measuring (validation) volume to account for the procedure of particle sampling and fluctuations in the particle concentration. To compensate for the short characteristic length of the validation volume, the properties of particles are expressed by properties of fields of particle groups, using a local averaging time. A window shift and a decorrelation scheme are applied on the fields to increase their frequency resolution. This algorithm has been tested on numerical time series, provided by an Eulerian/Lagrangian code representing a gas/solids flow past a bluff body. Moments and spectral estimates of concentration and velocity of particle groups were successfully validated by the numerical simulation using the PDA data algorithm and control volume averaging. The control volume was much larger than the PDA validation volume, but the centre positions of the two volumes were identical.  相似文献   

5.
The dispersion of solid particles in a turbulent liquid flow impinging on a centrebody through an axisymmetric sudden expansion was investigated numerically using a Eulerian–Lagrangian model. Detailed experimental measurements at the inlet were used to specify the inlet conditions for two-phase flow computations. The anisotropy of liquid turbulence was accounted for using a second-moment Reynold stress transport model. A recently developed stochastic–probabilistic model was used to enhance the computational efficiency of Lagrangian trajectory computations. Numerical results of the stochastic–probabilistic model using 650 particle trajectories were compared with those of the conventional stochastic discrete-delta-function model using 18 000 particle trajectories. In addition, results of the two models were compared with experimental measurements. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.  相似文献   

7.
A new large eddy simulation (LES) approach for particle-laden turbulent flows in the framework of the Eulerian formalism for inertial particle statistical modelling is developed. Local instantaneous Eulerian equations for the particle cloud are first written using the mesoscopic Eulerian formalism (MEF) proposed by Février et al. (J Fluid Mech 533:1–46, 2005), which accounts for the contribution of an uncorrelated velocity component for inertial particles with relaxation time larger than the Kolmogorov time scale. Second, particle LES equations are obtained by volume filtering the mesoscopic Eulerian ones. In such an approach, the particulate flow at larger scales than the filter width is recovered while sub-grid effects need to be modelled. Particle eddy-viscosity, scale similarity and mixed sub-grid stress (SGS) models derived from fluid compressible turbulence SGS models are presented. Evaluation of such models is performed using three sets of particle Lagrangian results computed from discrete particle simulation (DPS) coupled with fluid direct numerical simulation (DNS) of homogeneous isotropic decaying turbulence. The two phase flow regime corresponds to the dilute one where two-way coupling and inter-particle collisions are not considered. The different particle Stokes number (based on Kolmogorov time scale) are initially equal to 1, 2.2 and 5.1. The mesoscopic field properties are analysed in detail by considering the particle velocity probability function (PDF), correlated velocity power spectra and random uncorrelated velocity moments. The mesoscopic fields measured from DPS+DNS are then filtered to obtain large scale fields. A priori evaluation of particle sub-grid stress models gives comparable agreement than for fluid compressible turbulence models. It has been found that the standard Smagorinsky eddy-viscosity model exhibits the smaller correlation coefficients, the scale similarity model shows very good correlation coefficient but strongly underestimates the sub-grid dissipation and the mixed model is on the whole superior to pure eddy-viscosity model.  相似文献   

8.
N. Thevand  E. Daniel 《Shock Waves》2002,11(4):279-288
The importance of the lift force acting on the dispersed phase in the boundary layer of a laminar gas-particle dilute mixture flow generated by a shock wave is investigated numerically. The particle phase is supposed to form a continuum and is described by an Eulerian approach. The ability of the Eulerian model to simulate particle flows and the importance of the two-way coupling are proven by comparison with experimental data as well as with the numerical results from schemes based on a Lagrangian approach. The models used for the lift force are discussed through comparisons between numerical and experimental results found in the literature. Some results about the formation of a dust cloud are numerically reproduced and show the major role of the lift force. Simulations of two-dimensional two-phase shock tube flows are also performed including the lift force effects. Although the wave propagation is weakly influenced by the lift force, the force modifies substantially the dynamics of the flow near the wall. Received 17 February 2000 / Accepted 30 November 2000  相似文献   

9.
A series of numerical simulations were performed to investigate the distribution and deposition properties of particles in turbulent flows bounded by permeable walls using the Large Eddy Simulation (LES) with a Lagrangian trajectory approach. The wall permeation speeds were taken from 10−4 to 10−2 of the bulk velocity. The directions of the permeation speed were the same at both walls, and they were inward on one wall but outward on the other wall to reserve the fluid mass. Particles with Stokes number (respecting viscous time scale) around 0.1, 1 and 10 were released in the fully developed turbulent channel flow. The particle–particle interaction and the retroaction from particles to the fluid were neglected. The fluid-phase turbulence statistical properties and particle's transport characteristics by vortexes were then analyzed in details. If the wall permeation exists, the turbulence intensities will be depressed close to the outward permeable wall but increased near the inward permeable wall. Not influenced by the wall permeation, the suspended particles with St+ ∼O(1) tend to accumulate in the less vortical zones away from the wall, while those particles in the flow regions near the outward permeable wall will distribute disregarding of the vorticity. The turbulence structures near the outward permeable wall are found to exert promotional effects on the particle deposition rate, but such effects are different for particles with various Stokes number. A distribution tendency of streamwise streaks for the deposited particles is also found on the wall imposed by the high outward permeation speed and the clustering deposition pattern is more obvious with increasing particle Stokes number.  相似文献   

10.
In this paper, we present a new numerical scheme to describe the dynamic evolution of multiphase polydisperse systems in terms of time, space, and properties by coupling the Eulerian‐Lagrangian method for air‐particle two‐phase flow and population balance equations to describe particle property evolution due to microbehaviors (eg, aggregation, breakage, and growth). This coupling scheme was used to comprehensively simulate the two‐phase flow structure, particle size spectrum, particle number, and volume concentrations. These were characterized by a high‐resolution particle tracking using the Lagrangian approach and the high precision of moments of the particle size spectrum by solving the population balance equation with the quadrature method of moments. The algorithm of the coupling scheme was incorporated into the open source computational fluid dynamics software OpenFOAM to simulate the dynamic evolution of vehicle exhaust plume. The impacts of vehicle velocity, exhaust temperature, and aggregation efficiency on the distribution of auto exhaust particles in space and changes in their properties were analyzed. The results indicate that the particle number concentration, volume concentration, and average diameter of particles in the vehicle exhaust plume could be strongly affected by the plume structure and flow properties.  相似文献   

11.
12.
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time stepsn andn+1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.  相似文献   

13.
In this paper, a direct numerical simulation of particle-laden flow in a flat plate boundary layer is performed, using the Eulerian–Lagrangian point-particle approach. This is, as far as we know, the first simulation of a particle-laden spatially-developing turbulent boundary layer with two-way coupling. A local minimum of the particle number density is observed in the close vicinity of the wall. The present simulation results indicate that the inertial particles displace the quasi-streamwise vortices towards the wall, which, in turn, enhance the mean streamwise fluid velocity. As a result, the skin-friction coefficient is increased whereas the boundary layer integral thicknesses are reduced. The presence of particles augments the streamwise fluctuating velocity in the near-wall region but attenuates it in the outer layer. Nevertheless, the wall-normal and spanwise velocity fluctuations are significantly damped, and so is the Reynolds stress. In addition, the combined effect of a reduced energy production and an increased viscous dissipation leads to the attenuation of the turbulent kinetic energy.  相似文献   

14.
The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.  相似文献   

15.
A direct numerical simulation of a strongly coaxial swirling particle-laden flow is conducted with reference to a previous experiment. The carrier phase is simulated as a coaxial swirling flow through a short nozzle injecting into a large container. The particle phase is carried by the primary jet, and simulated in the Lagrangian approach. The drag force, slip-shear force and slip-rotation force experienced by particles are calculated. A partial validation of the results is followed. The results are analyzed in Eulerian approach focusing on the statistical behavior of particle motion. The relative importance of the drag, slip-shear and slip-rotation forces under different Stokes numbers is indicated quantitatively. The particle velocity profiles, fluctuations, Reynolds stress, and turbulence intensity are demonstrated and analyzed respectively. An important “choke” behavior for large particles within the mainstream is found and interpreted. Additionally, the patterns of particle distribution and the helical structures of particle motion under different Stokes numbers are demonstrated qualitatively and analyzed quantitatively.  相似文献   

16.
The flow of particulate two‐phase flow mixtures occur in several components of solid fuel combustion systems, such as the pressurised fluidised bed combustors (PFBC) and suspension‐fired coal boilers. A detailed understanding of the mixture characteristics in the conveying component can aid in refining and optimising its design. In this study, the flow of an isothermal, dilute two‐phase particulate mixture has been examined in a high curvature duct, which can be representative of that transporting the gas–solid mixture from the hot clean‐up section to the gas turbine combustor in a PFBC plant. The numerical study has been approached by utilising the Eulerian–Lagrangian methodology for describing the characteristics of the fluid and particulate phases. By assuming that the mixture is dilute and the particles are spherical, the governing particle momentum equations have been solved with appropriately prescribed boundary conditions. Turbulence effects on the particle dispersion were represented by a statistical model that accounts for both the turbulent eddy lifetime and the particle transit time scales. For the turbulent flow condition examined it was observed that mixtures with small particle diameters had low interphase slip velocities and low impaction probability with the pipe walls. Increasing the particle diameters (>50 μm) resulted in higher interphase slip velocities and, as expected, their impaction probability with the pipe walls was significantly increased. The particle dispersion is significant for the smaller sizes, whereas the larger particles are relatively insensitive to the gas turbulence. The main particle impaction region, and locations most prone to erosion damage, is estimated to be within an outer duct length of two to six times the duct diameter, when the duct radius of curvature to the duct diameter ratio is equal to unity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Sedimentation of particles in an inclined vessel is predicted using a two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Mapping particle properties to an Eulerian grid and then mapping back computed stress tensors to particle positions allows a complete solution of sedimentation from a dilute mixture to close-pack. The solution scheme allows for distributions of types, sizes and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The MP-PIC solution method captures the physics of inclined sedimentation which includes the clarified fluid layer under the upper wall, a dense mixture layer above the bottom wall, and instabilities which produce waves at the clarified fluid and suspension interface. Measured and calculated sedimentation rates are in good agreement.  相似文献   

18.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Large-eddy simulations (LES) of particle-laden turbulent flows are presented in order to investigate the effects of particle response time on the dispersion patterns of a space developing flow with an obstruction, where solid particles are injected inside the wake of an obstacle [Vincont, J.Y., Simoens, S., Ayrault M., Wallace, J.M., 2000. Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J. Fluid Mech. 424, 127–167]. The numerical method is based on a fully explicit fractional step approach and finite-differences on Cartesian grids, using the immersed boundary method (IBM) to represent the existence of solid obstacles. Two different turbulence models have been tested, the classical Smagorinsky turbulence model and the filtered structure function model. The dispersed phase was modelled either by an Eulerian approach or a Lagrangian particle tracking scheme of solid particles with Stokes numbers in the range St = 0–25, assuming one-way coupling between the two phases. A very good agreement was observed between the Lagrangian and Eulerian approaches. The effect of particle size was found to significantly differentiate the dispersion pattern for the inhomogeneous flow over the obstacle. Although in homogeneous flows like particle-laden turbulent channels near-wall particle clustering increases monotonically with particle size, for the examined flow over an obstacle, preferential concentration effects were stronger only for an intermediate range of Stokes numbers.  相似文献   

20.
The aim of the present paper is to introduce and to discuss inconsistency errors that may arise when Eulerian and Lagrangian models are coupled for the simulations of turbulent poly-dispersed two-phase flows. In these hybrid models, two turbulence models are implicitly used at the same time and it is important to check that they are consistent, in spite of their apparent different formulations. This issue is best revealed in the case of very small particles, or tracer-limit particles, where it is assessed that coupling inconsistent turbulence models (Eulerian and Lagrangian) can result in non-physical results, notably for second-order fluid velocity moments. Computations for fluid particles in a turbulent channel flow using several coupling strategies are presented to illustrate this question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号