首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhaled jets from an infected person are found to be locked at a certain height when thermal stratification exists in rooms, causing a potential high risk of disease transmission. This work is focused on the theoretical analysis of the dynamic characteristics of human speech droplets and the residual droplet nuclei in both thermally uniform and stratified environments. Results show that most droplets generated from human speaking can totally evaporate or deposit to the ground within 1.5-2 m. For small droplets of < 80μm, thermal stratification shows a more significant impact on their residues. The lock-up height of the droplet nuclei is a function of droplet size and the temperature gradient, and within this lock-up layer, these droplet nuclei can travel a long distance, much more than 2m. For medium droplets of 80-180 μm, thermal stratification can weaken the evaporation and accelerate the deposition processes, equivalent to a higher relative humidity (RH). Accordingly, more droplets can deposit to the ground, reducing the exposure to large droplets in close proximity to the source. Large droplets of > 180μm show no dependence on stratification and RH. These findings can have implications for developing effective engineering methods to limit the spread of infectious disease.  相似文献   

2.
L. Liu  J. Wei  Y. Li  A. Ooi 《Indoor air》2017,27(1):179-190
Understanding how respiratory droplets become droplet nuclei and their dispersion is essential for understanding the mechanisms and control of disease transmission via droplet‐borne and airborne routes. A theoretical model was developed to estimate the size of droplet nuclei and their dispersion as a function of the ambient humidity and droplet composition. The model‐predicted dried droplet nuclei size was 32% of the original diameter, which agrees with the maximum residue size in the classic study by Duguid, 1946, Edinburg Med. J., 52 , 335 and the validation experiment in this study, but is smaller than the 50% size predicted by Nicas et al., 2005, J. Occup. Environ. Hyg., 2 , 143. The droplet nuclei size at a relative humidity of 90% (25°C) could be 30% larger than the size of the same droplet at a relative humidity of less than 67.3% (25°C). The trajectories of respiratory droplets in a cough jet are significantly affected by turbulence, which promotes the wide dispersion of droplets. We found that medium‐sized droplets (e.g., 60 μm) are more influenced by humidity than are smaller and larger droplets, while large droplets (≥100 μm), whose travel is less influenced by humidity, quickly settle out of the jet.  相似文献   

3.
C. Chen  B. Zhao 《Indoor air》2010,20(2):95-111
Abstract This study employs a numerical model to investigate the dispersion characteristics of human exhaled droplets in ventilation rooms. The numerical model is validated by two different experiments prior to the application for the studied cases. Some typical questions on studying dispersion of human exhaled droplets indoors are reviewed and numerical study using the normalized evaporation time and normalized gravitational sedimentation time was performed to obtain the answers. It was found that modeling the transient process from a droplet to a droplet nucleus due to evaporation can be neglected when the normalized evaporation time is <0.051. When the normalized gravitational sedimentation time is <0.005, the influence of ventilation rate could be neglected. However, the influence of ventilation pattern and initial exhaled velocity on the exhaled droplets dispersion is dominant as the airflow decides the droplets dispersion significantly. Besides, the influence of temperature and relative humidity on the dispersion of droplets can be neglected for the droplet with initial diameter <200 μm; while droplet nuclei size plays an important role only for the droplets with initial diameter within the range of 10 μm–100 μm.

Practical Implications

Dispersion of human exhaled droplets indoor is a key issue when evaluating human exposure to infectious droplets. Results from detailed numerical studies in this study reveal how the evaporation of droplets, ventilation rate, airflow pattern, initial exhaled velocity, and particle component decide the droplet dispersion indoor. The detailed analysis of these main influencing factors on droplet dispersion in ventilation rooms may help to guide (1) the selection of numerical approach, e.g., if the transient process from a droplet to a droplet nucleus due to evaporation should be incorporated to study droplet dispersion, and (2) the selection of ventilation system to minimize the spread of pathogen‐laden droplets in an indoor environment.  相似文献   

4.
Movement and evaporation of small droplets in the room air are investigated in this paper through CFD simulations. A modified drift-flux model is presented with the droplet evaporation rate and the drift velocity expressed as simple algebra functions of droplet diameter, which is integrated in the transport equations of droplet number density and droplet bulk density. Evaporating droplets are treated as a continuum phase with one way coupling with the carrier phase, i.e. air. Our numerical simulations reveal that the distribution of the large evaporating droplets in the ventilated room air is characterized by a combination of the settling feature when droplets are first generated and released and the dispersion feature after the droplets are evaporated to be either very fine or become droplet nuclei. For droplets less than 50 μm in diameter, the dispersion feature is dominant in the test room that we simulated, while for droplets larger than 100 μm in diameter, the settling feature dominates. For evaporating droplets between these two sizes, the spatial distribution of droplets tends to be located at the lower part of the test room than that of small neutral aerosol particles. Within this size range, a lower initial position of the droplets in the room results in a higher deposition rate of the droplets on the floor.  相似文献   

5.
Xie X  Li Y  Chwang AT  Ho PL  Seto WH 《Indoor air》2007,17(3):211-225
A large number of infectious diseases are believed to be transmitted between people via large droplets and by airborne routes. An understanding of evaporation and dispersion of droplets and droplet nuclei is not only significant for developing effective engineering control methods for infectious diseases but also for exploring the basic transmission mechanisms of the infectious diseases. How far droplets can move is related to how far droplet-borne diseases can transmit. A simple physical model is developed and used here to investigate the evaporation and movement of droplets expelled during respiratory activities; in particular, the well-known Wells evaporation-falling curve of droplets is revisited considering the effect of relative humidity, air speed, and respiratory jets. Our simple model considers the movement of exhaled air, as well as the evaporation and movement of a single droplet. Exhaled air is treated as a steady-state non-isothermal (warm) jet horizontally issuing into stagnant surrounding air. A droplet is assumed to evaporate and move in this non-isothermal jet. Calculations are performed for both pure water droplets and droplets of sodium chloride (physiological saline) solution (0.9% w/v). We calculate the droplet lifetimes and how droplet size changes, as well as how far the droplets travel in different relative humidities. Our results indicate that a droplet's size predominately dictates its evaporation and movement after being expelled. The sizes of the largest droplets that would totally evaporate before falling 2 m away are determined under different conditions. The maximum horizontal distances that droplets can reach during different respiratory activities are also obtained. Our study is useful for developing effective prevention measures for controlling infectious diseases in hospitals and in the community at large. PRACTICAL IMPLICATIONS: Our study reveals that for respiratory exhalation flows, the sizes of the largest droplets that would totally evaporate before falling 2 m away are between 60 and 100 microm, and these expelled large droplets are carried more than 6 m away by exhaled air at a velocity of 50 m/s (sneezing), more than 2 m away at a velocity of 10 m/s (coughing) and less than 1 m away at a velocity of 1 m/s (breathing). These findings are useful for developing effective engineering control methods for infectious diseases, and also for exploring the basic transmission mechanisms of the infectious diseases. There is a need to examine the air distribution systems in hospital wards for controlling both airborne and droplet-borne transmitted diseases.  相似文献   

6.
Respiratory bioaerosol deposition in public transport cabins is critical for risk analysis and control of contact transmission. In this work, we built a two-row four-seat setup and an air duct system to simulate a cabin environment. A thermal manikin on the rear left-hand seat was taken as the infected passenger (IP) and “coughed” three times through a cough generator. The deposited viruses and droplets on nearby seats were measured by a cultivation method and microscope, respectively. The effects of seat backrest and overhead gasper jet were studied. Results showed that the number of deposited virus on the front seat was one order of magnitude higher than that on other seats which only contained droplets smaller than 10 µm in diameter. When the backrest was 15 cm higher than the cough, the deposited number of viruses was reduced to 5% of that with the backrest at the same height with the cough. The gasper jet above the IP with a velocity of 1.5 m/s can reduce the deposited viruses to 4% of that with gasper off. It indicates that both the gasper jet and backrest can work as mitigation measures to block the cough jet and protect the nearby passengers.  相似文献   

7.
In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus-laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling-to-Mixing-Plate-out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1-D and 3-D problems for non-evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104/ml) to about 1100–1250 s at high viral loads (>1011/ml). The implications are discussed.  相似文献   

8.
细水雾灭火机理探讨   总被引:12,自引:3,他引:9  
本文研究了细水雾水滴直径与蒸发时间的关系,不同可燃物燃耗氧量的关系,并分析了水滴蒸发吸热量和水蒸汽分压增加对灭火效果的贡献,结合实验研究结果提出细水雾灭火的机理主要是水滴迅速汽化形成的水蒸气层阻碍了氧气向燃烧区域的扩散,而使可燃物燃烧耗尽局部区域氧气窒息熄灭。  相似文献   

9.
Evaporation of water droplets while traveling in hot air layer will be studied. The air-droplet system is analyzed by solving the mass, momentum and energy conservation equations for each phase. The droplet phase is described by the Lagrangian approach. Two conditions of air flow in the smoke layer are assumed. Firstly, as commonly used in modeling fire suppression by water spray, the smoke layer is assumed to be quiescent. Secondly, both gas cooling effect and air entrainment in the water spray cone are included. The properties of gas phase related to evaporation are specific heat capacity, thermal conductivity and dynamic viscosity. All these are evaluated by the one-third rule. The Runge–Kutta algorithm is used to solve the ordinary differential equation group for the droplet motion with heat transfer. Droplet positions, velocities, temperatures and diameters are calculated while traveling in the hot air reservoir. The effects of air temperature, water vapor mass fraction, thickness of hot air reservoir, and initial diameter on the droplet behavior are analyzed. The quantity of heat absorbed by a single droplet is calculated. Results are then calculated for a water spray by taking it has many droplets. The cooling effect of the water vapor produced is considered. Water spray consisting of small droplets should absorb more heat while acting on the hot air layer. The ratio of the heat for vaporization to the total heat absorbed by water can go up to 0.9 when all the droplets are evaporated. Limited experimental data are selected to verify the mathematical model. Predicted results are useful for studying fire suppression by water mist system.  相似文献   

10.
The occurrence of close proximity infection for many respiratory diseases is often cited as evidence of large droplet and/or close contact transmission. We explored interpersonal exposure of exhaled droplets and droplet nuclei of two standing thermal manikins as affected by distance, humidity, ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short‐range modes and the long‐range airborne route. The short‐range modes include both the conventional large droplet route and the newly defined short‐range airborne transmission. We thus reveal that transmission occurring in close proximity to the source patient includes both droplet‐borne (large droplet) and short‐range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet‐borne and short‐range airborne routes are different; their effective control methods also differ. Neither the current droplet precautions nor dilution ventilation prevents short‐range airborne transmission, so new control methods are needed.  相似文献   

11.
Seasonal influenza epidemics have been responsible for causing increased economic expenditures and many deaths worldwide. Evidence exists to support the claim that the virus can be spread through the air, but the relative significance of airborne transmission has not been well defined. Particle image velocimetry (PIV) and hot-wire anemometry (HWA) measurements were conducted at 1 m away from the mouth of human subjects to develop a model for cough flow behavior at greater distances from the mouth than were studied previously. Biological aerosol sampling was conducted to assess the risk of exposure to airborne viruses. Throughout the investigation, 77 experiments were conducted from 58 different subjects. From these subjects, 21 presented with influenza-like illness. Of these, 12 subjects had laboratory-confirmed respiratory infections. A model was developed for the cough centerline velocity magnitude time history. The experimental results were also used to validate computational fluid dynamics (CFD) models. The peak velocity observed at the cough jet center, averaged across all trials, was 1.2 m/s, and an average jet spread angle of θ = 24° was measured, similar to that of a steady free jet. No differences were observed in the velocity or turbulence characteristics between coughs from sick, convalescent, or healthy participants.  相似文献   

12.
The risk of cross‐infection is high when the susceptible persons are exposed to the pathogen‐laden droplets or droplet nuclei exhaled by infectors. This study proposes a jet integral model to predict the dispersion of exhaled contaminants, evaluating the exposure risk and determining a threshold distance to identify the direct and indirect exposures in both thermally uniform and stratified environments. The results show that the maximum concentration of contaminants exhaled by a bed‐lying infector clearly decreases in a short distance (<1.8 m) in a uniform environment, while it maintains high values in a long distance in a stratified environment. The lock‐up phenomenon largely weakens the decay of the concentration. The direct exposure of the receiver is determined primarily by the impact scope of the exhaled airflow, while the indirect exposure is mainly related to the ventilation rate and air distribution in the room. In particular, the distance of direct exposure is the longest (approximately 2 m) when the receiver's breathing height is at the lock‐up layer in a stratified environment. Our study could be useful for developing effective prevention measures to control cross‐infection in the initial stage of design of indoor layouts and ventilation systems.  相似文献   

13.
《Fire Safety Journal》1996,27(2):141-158
The effect of varying initial liquid-solid contact angle on the evaporation of single droplets of water deposited on a stainless steel surface is studied using both experiments and numerical modeling. Contact angle is controlled in experiments by adding varying amounts] (100 and 1000 ppm) of a surfactant to water. The evolution of contact angle and liquid-solid contact diameter is measured from a video record of droplet evaporation. The computer model is validated by comparison with the experimental results. Reducing the contact angle increases the contact area between the droplet and solid surface, and also reduces droplet thickness, enhancing heat conduction through the droplet. Both effects increase the droplet evaporation rate. Decreasing the initial contact angle from 90 to 20° reduces droplet evaporation time by approximately 50%. The computer model is used to calculate surface temperature and heat flux variation during droplet evaporation: adding 1000 ppm of surfactant to the droplet is shown to enhance surface cooling by up to 110%.  相似文献   

14.
The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant.  相似文献   

15.
This work deals with the interaction between water droplet flows and smoke in a fire event in a confined and ventilated enclosure. The objective is to identify the specific effect of water spray in the specific environment of a confined and ventilated enclosure. The study is based on 17 large-scale fire tests performed in one room of 165 m3 ventilated at a renewal rate of 15.4 h−1. The fire source is a propane gas burner with a heat release rate of between 140 and 290 kW. The water spray system consists of two Deluge nozzles with a nozzle coefficient of 26 l/min/bar0.5. The test parameters are the fire heat release rate, the water flow rate, from 50 to 124 l/min, and the activation time. The study focuses on three topics, the interaction of the droplets with the smoke, the droplet evaporation process and the energy transferred to the droplets. The water spray significantly modifies the smoke stratification by mixing and cooling the gas phase. The rate of droplet evaporation has been determined from the water mass balance and is of the same order of magnitude as the rate of water vapor production by the combustion reaction. Heat transfer from the smoke to the droplets has been investigated using the energy balance equation. For a fire scenario in a confined and ventilated enclosure, the energy released by the fire is mainly transferred to the walls and extracted by the ventilation network. In the event of water spray activation, a significant share, up to 65%, is transferred to the droplet flows.  相似文献   

16.
喷雾蒸发冷却技术在钢厂转炉和电炉烟气处理工程有广泛的应用,对于喷雾蒸发机理的研究是建立在单个水滴蒸发的研究基础之上的。设计了实验装置,并根据实验装置利用FLUENT软件对实验工况进行了数值模拟,研究了气体温度、初始直径对喷雾水滴颗粒的影响,以及水滴温度和蒸发率随时间的变化关系,研究发现在高温空气中实验值与模拟值近似,而...  相似文献   

17.
In several technical applications, it is convenient to carry out physical separation between two neighboring zones with different physical characteristics (such as temperature or contaminant concentration), using a two dimensional gaseous jet, often called air curtain. In this paper, a submerged rectangular air jet, simulating an air curtain, has been investigated in order to infer the capability to reduce the transfer of dusty air between a “clean” zone and a contaminated environment (dusty zone). The investigated jet was generated by means of a rectangular nozzle with a discharge area of 0.02 square meters, while the dust has been simulated using atomized distilled water in a cloud of small droplets, sprayed transversally against the air curtain. Experiments have been performed running the air curtain at Reynolds Number(Re) ranging from 4500 to 25,500 while the Sauter Mean Diameter (SMD) of atomized water was equal to 6 microns. The water spray has been characterized using a TSI single component fiber optics Phase Döppler Particle Analyzer (PDPA), and the air curtain has been investigated by means of a Particle Image Velocimetry (PIV) technique. The amount, size distribution and velocity of the droplet cloud able to cross the air curtain was measured, obtaining as the main result, the dependence of the amount of droplets passing the barrier as a function of the Re of the air curtain. For a Re as high as 25,500, the curtain is able to interrupt the amount of surviving droplets, i.e. all the dust is rejected.  相似文献   

18.
A computational, multi-phase, model has been developed to study the interactions between water droplets and radial expansion of a gas cloud in a spherical chamber. Initial conditions for the gas cloud are specified based on chemical equilibrium calculations for the detonation of a high explosive (RDX). Mono-dispersed water droplets are injected at uniform concentration into the chamber prior to the expansion. A Lagrangian model is used to track the breakup of the parent drops near the shock front to form child drops, which are extremely small. The Navier–Stokes solutions show that the child droplets accumulate near the shock front and evaporate at 100 times higher rate than the parent droplets. Latent heat absorption is the dominant mechanism followed by the sensible heat absorption by the water vapor (and droplets), and momentum absorption from the high velocity gases by the child droplets. The simulations also show that the water vapor formed by the evaporation increases the gas density at the shock front. The increased density and reduced gas temperature (cooling) have opposite effects on the pressure at the shock front. This leads to only a modest suppression in the pressure. At realistic droplet concentrations (0.08 kg droplets/m3 of air), the water mist is shown to evaporate completely in a short time (2.42 ms) prior to shock reflection at the chamber wall mainly due to the breakup at the shock front. High concentrations of mist may be desirable, but are difficult to achieve in practice at the total flooding conditions.  相似文献   

19.
理论与实践表明:在静电洗涤器中采用射流感应破裂荷电技术能高效净化烟尘。射流感应破裂荷电是一种以静电学、两相流理论及空气动力学理论为基础的能产生超高荷质比带电液滴的新技术。因此,在空气污染控制领域,射流感应破裂荷电技术具有很好的应用前景。本文将在论述射流感应破裂荷电基本原理及其理论和实验研究成果的基础上,介绍国内外射流感应破裂荷电技术的成果和其烟尘净化应用中的新进展以及其潜在的工业价值。  相似文献   

20.
《Fire Safety Journal》1999,33(3):185-212
The focus of this paper is on numerical modeling of methanol liquid pool fires and the suppression of these fires using water mist. A mathematical model is first developed to describe the evaporation and burning of liquid methanol. The complete set of unsteady, compressible Navier–Stokes equations are solved along with an Eulerian sectional water mist model. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modeled by solving a modified form of the energy equation. Clausius–Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol.The interaction of water mist with pulsating fires stabilized above a liquid methanol pool and steady fires stabilized by a strong co-flowing air jet are simulated. Time-dependent heat release/absorption profiles indicate the location where the water droplets evaporate and absorb energy. The relative contribution of the various suppression mechanisms such as oxygen dilution, radiation and thermal cooling is investigated. Parametric studies are performed to determine the effect of mist density, injection velocity and droplet diameter on entrainment and suppression of pool fires. These results are reported in terms of reduction in peak temperature, effect on burning rate and changes in overall heat release rate. Numerical simulations indicate that small droplet diameters exhibit smaller characteristic time for decrease of relative velocity with respect to the gas phase, and therefore entrain more rapidly into the diffusion flame than larger droplet. Hence for the co-flow injection case, smaller diameter droplets produce maximum flame suppression for a fixed amount of water mist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号