首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
对设置三角形阻流件的水平矩形通道内的换热问题进行了二维数值模拟,在Re=1500~35000范围内,研究了阻流件顶角大小和高度对恒热流加热壁面的水平通道内的对流传热系数的影响状况.结果表明:当Re≤8000时,阻流件顶角的变化对Nu数影响不明显;当Re>8000后,随着顶角α的增加,Nu数先上升后下降;当顶角在30°时,换热效果最好.阻流件高度对Nu数的影响很大,在相同的顶角下,高度越高,Nu数越大.  相似文献   

2.
利用有限体积法对三维不可压缩的N-S方程进行离散,对上下表面带有错排间断性楔形肋片且对置的仿螺旋内冷通道进行了数值模拟。网格划分采用非结构化混合网格,湍流模型为kε-两方程模型,在近壁面处采用标准壁面函数法进行处理,速度和压力的耦合采用S IM PLE算法。计算获得了楔形仿螺旋肋片内冷通道在楔形肋片与主流方向夹角分别为0°、15°、30°时的三维流场分布。结果表明楔形仿螺旋肋片内冷通道的流场结构比较复杂,通道内流体流动达到了预期的仿螺旋流动效果。通道的平均努谢尔数随楔形肋片与主流夹角的增大而呈增大趋势,通道换热强度得到了明显的提高,但同时流动阻力也显著增加。  相似文献   

3.
空冷凝汽器椭圆翅片椭圆管束外空气的流动与传热特性   总被引:7,自引:0,他引:7  
研究空冷凝汽器椭圆翅片椭圆管管束外空气的流动与传热特性,对火电站空冷岛的设计与运行具有重要意义.通过CFD模拟,获得了椭圆翅片椭圆管管束外冷却空气的流场和温度场,计算得到了空冷凝汽器冷却空气对流换热平均Nu和摩擦系数f随Re的变化规律,并采用最小二乘法拟合得到了相应的关联式.结果表明:随冷却空气流动Re的增大,Nu增大,f减小.  相似文献   

4.
提出了一种新型燃机透平叶片带肋直通道结构优化策略,采用ANSYS Workbench优化设计平台,应用Kriging代理模型和遗传算法对燃机叶片内宽高比为4、肋片角度为45°的带肋直通道进行了优化计算。结果表明:在带肋直通道切除部分肋片效率为负的肋片的新型结构可实现强化换热且降低流阻;优化后的肋片通道较未优化的通道,换热性能因子提升2. 9%,摩擦因子比降低可达3. 8%;通过寻优计算,获得了宽高比为4,肋片倾斜角度45°燃机叶片内带肋直通道最优结构参数。  相似文献   

5.
数值模拟了肋和气膜孔的相对位置对矩形通道4个壁面换热特性的影响,重点分析了通道4个壁面换热系数差别以及3种气膜孔位置换热.计算结果和实验数据吻合较好.结果表明:气膜孔位置对同时带肋和气膜孔的下壁面影响最大,孔在肋间上游换热最好,孔在肋中间换热次之,孔在肋间下游换热最差,气膜孔位置对光滑的左右壁面换热影响较小,对只带肋的上壁面几乎没有影响.肋的扰流和气膜孔抽吸使通道下壁面换热系数增幅最大,左右壁面次之,上壁面最小.沿着流动方向,肋扰流和气膜孔出流共同作用导致带肋壁面换热增强因子先增大后减小,光滑壁面换热增强因子先保持不变后减小.  相似文献   

6.
根据纵向涡强化传热技术提出了新型的强化换热管——锥形内肋管,运用数值模拟方法,研究了新型强化换热管结构参数锥底宽度a、导程P、肋深e和Re数对Nu、沿程阻力系数f及传热综合因子η的影响。结果表明:换热管内壁面边缘处产生了较多的微小涡流,有效破坏了流动边界层,强化了传热。在充分湍流的条件下,流体Re越小、e越小,其综合传热性能越强。当Re<15 000时,a对η的影响要大于P;在过渡点后, P对η影响较大。通过综合传热性能分析,给出了适合不同Re区间的锥形内肋优化参数。  相似文献   

7.
基于OpenFOAM平台,对带直肋W/H=1双通道在静止状态下的流动耦合传热特性进行大涡数值模拟,研究了静止时双通道的流动换热性能。可以得出:在静止状态下由于肋片的扰流、离心作用,弯管处及弯管后的第二通道的Nu数比值大于第一通道,Nu数比值最大值出现在肋片的顶端,旋涡结构明显的多于第一通道,故换热效果明显的好于第一通道。结果表明,基于OpenFOAM的大涡模拟能够较好地应用于带肋通道复杂流动和传热研究。  相似文献   

8.
采用SIMPLE算法模拟膜片管通道中的流动与换热,分析流场中出现的非线性现象以及不同管束排列方式对换热的影响。物理模型长度为185. 6 mm,高度为92. 8 mm,圆管直径为32 mm。烟气入口温度为400 K,上下两侧固体壁面温度为300 K。假设流动与换热进入充分发展阶段,雷诺数(Re)的取值范围是3 000~25 000,通入不同流速的烟气与两侧的壁面进行换热。结果表明:采用雷诺应力模型(RSM)所得的努塞尔数(Nu)与实验关联式结果最吻合,而且相对误差在5%~17%间;采用直接模拟(DNS)模拟时,稳态到非稳态的临界Re是100;在同一Re时,随着管间距减小,Nu是逐渐增加的,当Re取为25 000,管束水平间距和竖直间距均取为43. 2 mm时,通道换热能力达到最大且相应的Nu是195. 23。  相似文献   

9.
运用数值计算的方法将流动方向扰流圆柱排列密度对涡轮叶片尾缘冷却通道中流动传热的影响进行了三维数值研究。研究了流动雷诺数、流动方向圆柱排列密度对肋柱扰流矩形通道表面传热影响的规律。计算结果表明:在研究范围内,肋柱表面的平均Nu均随着Re的增大而增大。在Re相同的情况下,随X/D取值的增大,肋柱表面平均Nu有所减小。Nu在通道进口附近逐渐增加,然后达到充分发展值。传热在迎向流动方向的圆柱侧较强,在流动向背侧表面传热较弱。沿圆柱高度方向在中部传热较强。  相似文献   

10.
利用数值模拟方法分析了矩形仿螺旋肋片内冷通道中肋片导流角度对内冷通道三维流场特性、换热特性以及流动阻力特性的影响。数值计算结果表明,肋片导流角度对内冷通道的流动与换热特性具有较大的影响。流场中冷却介质螺旋流动的强度随着肋片导流角增大而增强,肋片导流角度越大则内冷通道的换热强度越强,同时通道中流动阻力也明显增大。从内冷通道的综合换热效果来看,当肋片导流角度为7。时,矩形仿螺旋肋片内冷通道的综合换热效果最好。  相似文献   

11.
In order to study the chaotic behavior of vibrational thermal convection in a square enclosure, a calculation method and the features of the average Nusselt number with vibration frequency were precisely examined. In the computation, the Prandtl number, the Rayleigh number, and the vibration Grashof number were held constant at 0.71, 104, and 106, respectively. The angular frequency of vibration was changed in the range between 10 and 7680. The results showed that the phenomena could be predicted with the calculation method adopted in this paper and the change in the time‐dependent characteristics of surface‐averaged Nusselt number with the angular frequency of vibration could be analyzed well with the power spectra. These changes were characterized by the five regimes proposed by Fu and Shieh. Moreover, it was clarified that the region where the hysteresis phenomena were detected corresponded to the one where the variation of the surface‐averaged Nusselt number was irregular and aperiodic. © 2000 Scripta Technica, Heat Trans Asian Res, 29(7): 545–558, 2000  相似文献   

12.
Using 3D-CFD code, Nusselt number correlations for a microchannel heat exchanger (MCHE) with S-shaped fins used for hot water suppliers are obtained through numerical experiments and then validated. The supercritical carbon dioxide working fluid is assumed to operate around the pseudo-critical point, where fluid properties change radically. Calculations with 20 different temperatures are executed to produce Nusselt number correlations for each side. The fluid inlet temperature in each calculation is defined as 2 °C lower or higher than the constant wall temperature, respectively, for cold and hot side simulations. The small temperature difference of 2 °C is sufficiently small to regard thermal–hydraulic properties as constant. A new integrating method using the correlations to calculate the heat-transfer-performance is proposed. The resultant heat-transfer-performance is compared with that of another numerical result, which is reduced from large geometry and integration. The results agree within 3% error; the calculation accuracy of the method is confirmed. Experimental results with MCHE verify the correlations. The difference is approximately 5%. Using few computer resources, these Nusselt number correlations and the heat-transfer-performance calculation methods using correlation information are sufficiently accurate to evaluate heat exchangers.  相似文献   

13.
Laminar free convection in an isothermal asymmetrically heated vertical channel has been extensively studied in the past, and empirical correlations for the overall channel convective heat transfer rate are available in the literature. However, this problem has been revisited in order to develop empirical correlations that allow the calculation of the average Nusselt number for each channel wall separately. A numerical solution has been obtained for a Prandtl number of 0.71 and for Rayleigh numbers ranging from the conduction regime to the isolated boundary layer regime. The data have been used to develop correlations for the average Nusselt numbers on the hot and cold walls. These correlations satisfy a heat balance for the overall channel.  相似文献   

14.
The present study examines the turbulent flow of mixed convection heat transfer enhancement within a rectangular channel considering three different novel shapes of ribs (smooth, scalene, and curved-side triangular). The investigations were conducted experimentally by developing a new test facility, while the numerical computations were carried out using the finite volume method. The experimental work involves constructing of the channel, ribs, and all equipment and measurement instruments. The numerical work is based on ANSYS FLUENT considering the kε turbulent model. The results are presented and compared in terms of Nusselt number, friction factor, and performance factors for Reynolds numbers ranging between 3000 and 12,000. By comparing the average values of the numerically obtained Nusselt number with experimental measurements, the data showed a close agreement with a maximum difference of 5%. It also found that scalene triangular ribs (STRs) provide better performance in terms of heat transfer, although introducing a slight increase in friction losses. STRs showed (20%) increase in Nusselt number compared with smooth channel, and 3%–6% increase in Nusselt number compared with curved-side triangular ribs (CTRs). In contrast, CTRs have a lower friction factor value of 5% compared with STRs at a low value of a Reynolds number of 3000. Furthermore, the Nusselt number changes significantly (250% increase) by increasing the value of the Reynolds number from 3000 to 12,000. A thermal performance factor of up to 1.28 was achieved for the STRs at the lowest range of Reynolds' number of 3000. The findings from the present study are of practical importance for industries requiring heat transfer enhancement techniques to improve heat transfer equipment performance.  相似文献   

15.
A boundary layer flow of incompressible viscous fluid past a stretching plate with suction has been investigated. Expressions for the Nusselt number have been derived for Pr=1, Pr1 and Pr1 using an order of magnitude analysis. Further, the Nusselt number has been obtained for large Prandtl numbers applying an asymptotic series expansion. The dependence of the boundary layer thickness and the Nusselt number on suction vo are discussed.  相似文献   

16.
This work is devoted to the numerical calculation of heat and fluid flow past spherical particles and non-spherical particles of various shapes. Although numerous works have investigated drag forces (cd) for spherical and non-spherical particles, works about the Nusselt number (Nu) relations for non-spherical particles are rare. Motivated by this fact, as a first step we consider cuboid, spherical and ellipsoidal particles in steady-state regimes corresponding to Reynolds numbers (Re) from 10 up to 250. Due to the asymmetric flow existing when Re approaches the value of 250, all simulations are made using a three-dimensional domain. Good agreement was observed when our numerical results gained for the sphere were compared with published values for drag coefficients and Nusselt numbers. Based on the analysis of numerical results obtained for non-spherical particles we found out that in addition to the Reynolds number three geometry parameters influence particle-fluid interaction: the drag coefficient depends primarily on the normalized longitudinal length, while both the sphericity and the crosswise sphericity influence the Nusselt number. For that reason new correlations are developed for both the drag coefficient and the Nusselt number. The accuracy of the closures developed for cd and Nu is discussed in a comparison with published models.  相似文献   

17.
A three-dimensional lattice Boltzmann model is presented to simulate the film-boiling phenomenon. Single- and multimode film boilings are investigated. The flow and temperature fields around the vapor phase are obtained for various Jakob numbers. Furthermore, the effects of Jakob number on the Nusselt number and vapor tip velocity are investigated. The results show that on increasing the Jakob number, the bubble tip velocity increases while the Nusselt number decreases. Furthermore, it is found that in multimode film boiling, the peak and trough values of the local Nusselt number happen at the bubble position and the gap valleys between adjacent bubbles, respectively.  相似文献   

18.
Experiments were conducted to investigate flow and heat transfer characteristics of water in rectangular microchannels. All tests were performed with deionized water. The flow rate, the pressures, and temperatures at the inlet and outlet were measured. The friction factor, heat flux, and Nusselt number were obtained. The friction factor in the microchannel is lower than the conventional value. That is only 20% to 30% of the convectional value. The critical Reynolds number below which the flow remains laminar in the microchannel is also lower than the conventional value. The Nusselt number in the microchannel is quite different from the conventional value. The Nusselt number for the microchannel is lower than the conventional value when the flow rate is small. As the flow rate through the microchannel is increased, the Nusselt number significantly increases and exceeds the value of Nusselt number for the fully developed flow in the conventional channel. The micro‐scale effect was exhibited. The Nusselt number is also affected by the heat flux. The Nusselt number remains the constant value when the flow rate is small. The Nusselt number increases with the increase in the heat flux when the flow rate is large. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(4): 197–207, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20206  相似文献   

19.
建立微型燃气轮机CW(交叉波浪型,Cross Wavy)原表面回热器三维周期性充分发展数值计算模型,对芯体内传热和阻力特性进行了分析,确定了质量流量和温度水平对换热量及压降的影响,给出了CW原表面芯体板内阻力、传热因子以及努塞尔数与雷诺数之间的经验关联式。传热及阻力性能分析结果表明:随着雷诺数的增大,回热器芯体单元传热系数增大,传热量逐渐增加,并且随着低压高温烟气侧的进口温度升高,传热量增加幅度增大;回热器芯体单元回热度随雷诺数的增大而减小,随燃气进口温度升高而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号