首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Laser gas nitriding of Ti-6A1-4V has been investigated with both CO2 and Nd:YAG lasers. Results indicate that Nd:YAG laser in pulse mode provides a better surface finish and a lower cracking severity than CO2 laser. A crack-free nitrided layer has been obtained by optimizing the processing parameters. Titanium nitride (TiN) significantly increases the hardness of the nitrided surfaces. The amount of titanium nitride produced depends on the processing parameters, such as laser pulse energy and nitrogen concentration. With optimized parameters, the nitrided surface is somewhat rougher than the polished base metal but much smoother than the shot peened surface. The shrinkage effect in the laser melt zone produces surface residual tensile stresses regardless of the processing environment. Preheating or stress relieving after laser nitriding can significantly reduce the residual tensile stress level.  相似文献   

2.
Laser nitriding of commercial purity titanium using various concentrations of helium and nitrogen has been carried out. The surface appearance and microstructure of a treated layer were found to be dependent on the beam power density, interaction time, velocity and concentration of nitrogen. X-ray diffraction analyses have led to the conclusion that the dendrite layer in the resolidified zone of the nitrided specimens consisted mainly of TiN. The surface roughness of specimens after various laser treatments was investigated by SEM and a surface profilemeter. Using optical microscopy, the dendrite TiN and needle-like structure in the melt zone, and the large grain structure in the heat affected zone, were investigated. The surface wear resistance of nitriding CPTi was significantly improved compared to the untreated or laser glazed material, and the wear data were found to correlate with scanning electron microscopy observations. Two layers, having different microstructures, thickness and abrasive wear resistance were identified. Further, 100% overlapping considerably improved the wear resistance of the nitrided specimens.  相似文献   

3.
Laser Gas Nitriding of Ti-6Al-4V Part 2: Characteristics of Nitrided Layers   总被引:3,自引:0,他引:3  
The characteristics of laser nitrided layers formed on Ti-6Al-4V are presented in this investigation. It has been determined that titanium nitride (TiN) is formed, which significantly increases the hardness of the nitrided surfaces. The amount of titanium nitride produced depends on the processing parameters such as laser pulse energy and nitrogen concentration. Nitrided layers are much smoother along the laser pass direction than perpendicular to this direction. The shrinkage effect in the laser melt zone produces surface residual tensile stresses in Ti-6Al-4V samples regardless of whether the processing environment is Ar, N2, or a mixture of these gases. Pre-heating or stress relieving after laser nitriding significantly reduces the residual tensile stress level.  相似文献   

4.
A. Grill  D. Itzhak 《Thin solid films》1983,101(3):219-222
The nitriding of AISI M2 tool steel in an inductive r.f. plasma was investigated. The plasma was sustained with a 27.12 MHz generator in gas mixtures of N2 and H2 at a pressure of 10 mbar. The ion nitriding was performed at a net r.f. power of 400 W at substrate temperatures of 450–500 °C. X-ray diffraction studies of the treated samples revealed that the most efficient formation of nitride phases was observed in samples nitrided in a pure N2 plasma. As a result of the ion nitriding the surface hardness was substantially increased from a Vickers hardness VHN of 290 kgf mm-2 for untreated samples to a maximum VHN of 1200 kgf mm-2 for samples treated in a plasma sustained in a gas mixture with N2:H2 = 1:1.  相似文献   

5.
王博  孙淑华 《材料导报》2016,30(6):129-129
研究了纯铁及38CrMoAlA钢分别在500℃、0~0.4MPa压力和510℃、0~0.5MPa压力条件下的氨气渗氮行为。提高渗氮压力可显著加速气体渗氮动力学过程,纯铁在500℃和0.4 MPa下气体渗氮处理5h后渗氮层厚度(1160μm)可同比达到常规渗氮层厚度(205μm)的5倍以上,而38CrMoAlA钢经510℃和0.5 MPa压力下渗氮5h后的渗氮层厚度(400μm)几乎与常规渗氮50h所得硬化层厚度(440μm)相当。同时,纯铁及38CrMoAlA钢渗氮层中ε-Fe2-3N与γ′-Fe4N的相比例、氮势及表层硬度均随压力的提高呈现先增加后降低的变化趋势。提出了一种合金结构钢表面高强高韧渗氮层快速复合制备工艺(增压渗氮+冷轧)。与一段式常规渗氮及增压渗氮工艺相比,复合工艺处理表层硬度及韧性均较优良,尤其高剪切应力磨损条件下复合处理表层的耐磨性能最优,在20~600℃热循环处理10~300次条件下复合处理表层的耐热疲劳性能最佳。研究了42CrMo钢在既定的渗氮周期内(6h)以NH3为介质,530℃及不同压力循环次数条件下的气体渗氮行为。在渗氮温度和总时间相同条件下,循环压力气体渗氮样品化合物层随压力循环次数的增加逐渐减薄,渗氮层整体厚度随压力循环次数的增加逐渐增加,同时渗氮表层韧性随压力循环次数的增加逐渐增强。  相似文献   

6.
Surface hardening of Ti-6Al-4V alloy with laser surface melting (LSM) in a nitrogen atmosphere has been studied. In LSM, hardness increased almost three-fold in comparison to that of the substrate, the latter having a Vickers hardness of 350, by the formation of TiN in the range of 100m of melt depth. Hardness, then, decreased slowly and reached a minimum of 580 VHN at a maximum melt depth of 750m. -Ti was formed in the heat-affected zone (HAZ) with a VHN of 450. Ageing treatments were performed for all specimens at 450 °C and different ageing times (1–20h). Short ageing treatments increased the hardness in the melted zone as well as in the HAZ (1–3h). Long ageing treatments (7–20h) resulted in uniform hardness distribution in the melted zone.  相似文献   

7.
研究了气体渗氮层和激光淬火-渗氮层的相组成、微观结构、显微硬度及脆性。结果表明, 激光淬火-渗氮白亮层中ε-Fe3N含量由14.74%增至69.45%, 而脆硬的ξ-Fe2N含量由79.95%降至25.03%。表层的N含量降低, 渗氮层N浓度曲线降低趋势平缓, N的总扩散通量增加, 渗氮层厚度增加。激光淬火-渗氮层组织晶粒细小致密, 渗碳体分布在条状下贝氏体组织中, 硬度高的Cr2N颗粒数目增加, 白亮层显微硬度值显著提高, 渗氮层脆断的临界压力由气体渗氮层的3 N提高到激光淬火-渗氮层的6 N。   相似文献   

8.
钟厉  韩西 《材料保护》2004,37(2):22-25
基于纯N2离解产生活性氮原子能量条件的基本理论和纯氮离子渗氮模型,研究了间歇供N2闭炉纯氮离子渗氮新工艺以实现纯氮代替氨或氮-氢的离子渗氮.通过对渗氮层显微组织、相组成和硬度梯度的测定与分析,对纯氮离子渗氮工艺中N2分子临界离解能进行了理论计算和试验验证.结果表明,纯氮离子渗氮存在电压门槛值,只有在700 V左右的高电压下,并且采用间歇供N2闭炉方式进行离子渗氮,才能产生明显的渗氮效果.在相同的渗氮时间里,间歇供N2闭炉的纯氮离子渗氮可获得比常规纯氨离子渗氮更好的渗氮效果.  相似文献   

9.
Titanium and its alloys are known for their high specific strength as well as fatigue and corrosion resistance. However, they suffer from poor wear and friction resistance, limiting their use in tribological applications. Nitriding of these materials may be carried out favourably to harden them and thus to improve both wear and friction resistance. The laser nitriding process involves using the intense energy of the laser to melt the surface in a nitrogen comprising atmosphere. This results in creation of a very hard layer consisting of dendritic structures of nitride. But the non-uniformity of the melt pool and cracks in the nitrided layers have been generally observed. Our study deals with the results of Ti-6Al-4V laser surface nitriding and with the effects of a sample preheating on the cracks generation.  相似文献   

10.
Application of powder nitriding in relation to bath nitriding (Tenifer-process) Powder nitriding depends on thermal decomposition of lime nitrogen. This process is very simple, opposite to bath nitriding not requiring any expensive equipment. Only small specimens should be nitrided by this method. In relation to bath nitriding of 90 minutes powder nitriding should last nearly five hours. As after bath nitriding a zone of nitrides and a zone of diffusion formed on the surface of specimens. No pores were visible in the zone of nitrides of powder nitrided specimens.  相似文献   

11.
Shot peening is a simple but effective severe plastic deformation process to synthesize ultrafine grains in micro- to nanometer range on metallic surfaces. In this work, shot peening on AISI 4140 steel specimens was done in a novel centrifugal air blast shot peening reactor with shot velocity of 5.8?m/s for 3?h. Characterization of the shot peened surface (XRD, micro-hardness, SEM, and TEM) showed that surface undergoes significant plastic deformation with marked increase in microstrain of lattice, dislocation density, and surface hardness. XRD profiles and TEM analysis confirmed formation of ultrafine grain structure in the nanometer range. These specimens were then subjected to austenitic nitriding at 610°C for 4?h followed by cryo-treatment at???185°C for 32?h. Characterization of pre-shot peened nitrided and cryo-treated surfaces showed that there was marked improvement in surface hardness (from 695 to 797 HV0.05) and effective case depth (from 19 to 54?µm) in comparison with un-shot peened nitrided and cryo-treated specimens. It was demonstrated that presence of ultrafine grain structure and austenitic phase during nitriding plays synergetic role to improve content and diffusion kinetics of nitrogen in AISI 4140 steel surface.  相似文献   

12.
多脉冲激光辐射使置于氮气氛中的难熔过渡金属钛、钼和表面氮化,形成和组织致密的氮化层,用多种方法分析和表征了氮化层的化学成分和组织结构,激光的作用使得金属表面熔化和氮气激活,导致液相氮化反应,激光引起的加热熔化和激波效应同时使表层组织致密。  相似文献   

13.
Investigations on the Welding of the Age Hardenable Aluminium Alloys AlMgSi 1 and AlCuMg 1 Using a Pulsed Solid State Laser The age hardenable aluminium alloys AlMgSi 1 and AlCuMg 1 were laser welded using a pulsed 1.2 kW Nd: YAG-laser. Butt welds of 1mm thick plates were produced. With a gap width of 50 μm good welds good be produced even without filler. The small beam diameter (approximately 0.2mm in the focal point) leads to small welds and heat affected zones. The grain size within the weld is small and the amount of grain boundary liquation in the mushy zone is low due to the high temperature gradient in the melt pool. In samples which were welded in the age hardened condition the hardness in the weld drops down to the level of the homogenized condition. However, no significant evaporation or oxidation of alloying elements happens and the maximum hardness can be regained by a complete age hardening treatment. The tensile strength is higher than that of conventional welded sheets but the fatigue strength is reduced significantly.  相似文献   

14.
A Grill 《Vacuum》1983,33(6):333-337
Titanium and Ti8A/1Mo1V alloy have been nitrided with an ion beam source of nitrogen or agon and nitrogen, at a total pressure of 2?10×10?4 torr. The treated surface has been characterized by surface profilometry, X-ray diffractometry, Auger Electron Spectroscopy (AES), and microhardness measurements. It was found that tetragonal Ti2N phase forms in pure titanium and Ti8A/2Mo1V alloy with traces of AIN in the alloy. Two opposite processes were found to compete during the ion beam nitriding: (a) formation of nitrides in the surface layers; (b) sputtering of the nitrided layers by the ion beam. The highest surface hardness, of about 500 kg mm?2 in titanium and 800 kg mm?2 in Ti8A/1Mo1V, was obtained by nitriding with an ion beam of pure nitrogen at 4.2×10?4 torr, at beam voltage of 1000 V.  相似文献   

15.
Plain carbon steels are not suitable for nitriding as they form an extremely brittle case that spalls off readily, and the hardness increment of the diffusion zone is small. In this research, the effect of plasma nitriding time and temperature variation on the microstructure of the pack cemented aluminized plain carbon steel is investigated. All samples were aluminized at 900 °C for 2 h; the aluminized samples were subsequently plasma nitrided at 500 °C, 550 °C and 600 °C for 2.5, 5, 7.5 and 10 h. The phases formed on the sample surface were detected by X-ray diffraction (XRD). The cross section and samples surface were investigated by optical and scanning electron microscopy (SEM). Microhardness test was conducted to determine hardness change from the surface to the sample core. Results showed that by aluminizing the steel, Fe3Al phases as well as Fe–Al solid solution were formed on the surface and some aluminum rich precipitates were formed in solid solution grain boundaries. Plasma nitriding of the aluminized layer caused the formation of aluminum and iron nitride (AlN, Fe4N) on the sample surface. Consequently, surface hardness was improved up to about eight times. By increasing the nitriding temperature and time, aluminum-rich precipitates dissociated. Moreover, due to the diffusion of nitrogen through aluminized region during ion nitriding, iron and aluminum nitrides were formed in aluminized grain boundaries. Increasing nitriding time and temperature lead to the growth of these nitrides in the grain boundaries of the substrate. This phenomenon results in the increment of sample hardness depth. Plasma nitriding of aluminized sample in low pressure chamber with nitrogen and hydrogen gas mixture reduced surface aluminum oxides which were formed in aluminizing stage.  相似文献   

16.
Plasma nitriding behavior of Fe-Cr alloys has been studied at temperatures in the range of 773–873 K in order to provide basic knowledge for microstructure design of nitrided layers and to improve the wear resistance. In the nitriding temperature of 773 K, typical microstructure of nitrided layers was observed as reported elsewhere. However, anormal microstructure of nitrided layers was observed under a nitriding condition, at 873 K for 176.4 ks (49 h). In Fe-13Cr alloy, nitrided layer showed stripe-pattern, each sub-layer of which has different chromium content. Nitrided layer hardness increased gradually from the specimen surface to the nitriding front before dropping drastically to the same level as matrix hardness. The stripe-pattern was also observed for Fe-3Cr alloy at the vicinity of nitriding front for the same nitriding conditions. On the other hand, nitrided layers in Fe-8Cr and Fe-19Cr alloys are composed from different sub-layers, containing different concentration of chromium. These phenomena cannot be explained only by nitrogen diffusion process during the nitriding.  相似文献   

17.
采用间歇式真空氮化技术对TA2钛合金进行渗氮处理。探究氮氩混合比对合金氮化层结构和性能的影响规律。结果表明:表面渗氮层主要由TiN和TiN0.3相组成,氮氩比越低其有效硬化层越厚,但会降低有效活性N原子的相对含量,不利于渗层的致密性。适当的氮氩混合比能在TA2表面形成氮化物,N原子有效地向纵深扩散,氮化物层与扩散层结合紧密,过渡良好,硬度梯度平缓;腐蚀电位随着氮氩比的增加呈现逐渐上升趋势,从氮氩比为1∶5时的-0.622V提升到氮氩比为5∶1时的-0.549V,腐蚀电流和腐蚀速率则呈现出逐渐降低的趋势。  相似文献   

18.
In this paper, mechanical shot blasting on a large sized titanium plate is conducted to induce severe plastic deformation, which generates an ultrafine‐grained surface layer. The effect of an ultrafine‐grained layer on nitriding is evaluated at nitriding temperatures from 600 to 850 °C. The structural phases and mechanical property improvements are investigated and compared to those of a coarse‐grained specimen by using X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and mechanical property measurements. The results indicate that an ultrafine‐grained layer enhances the nitriding kinetics and produces a thicker nitrided layer than that of a coarse‐grained plate at the same gaseous nitriding temperatures. The improved kinetics are attributed to a greater number of grain boundaries and defects introduced into the titanium plate surface by the mechanical shot blasting treatment. Meanwhile, the surface and cross‐sectional hardness values improve compared to the coarse‐grained plate due to the thicker nitrided layer resulting from deeper nitrogen diffusion.  相似文献   

19.
Two materials, pure Fe and pure Al, were nitrided in a pulse plasma nitriding facility. The nitrogen profiles in surface layers and the surface phase structures of specimens nitrided at 500℃ for 8 h for Fe and for 6 h for Al were measured using the glow  相似文献   

20.
The microstructure and the kinetics of growth of the nitrided zone of a Mo-containing maraging steel were investigated by performing gaseous nitriding at temperatures between 713 K (440 °C) and 793 K (520 °C) and at nitriding potentials up to 0.5 atm?1/2 for both solution-annealed and precipitation-hardened specimens. The microstructure of the nitrided zone was investigated by means of X-ray diffraction (phase constitution; crystal imperfection). Fine, initially largely coherent Mo2N-type precipitates developed in the nitrided zone. The elemental concentration-depth profiles were determined employing glow discharge optical emission spectroscopy (GDOES). The nitrogen content within the nitrided zone exceeds the nitrogen content expected on the basis of the molybdenum content and the equilibrium solubility of nitrogen in a (stress-free) ferritic matrix: excess nitrogen occurs. A numerical model was applied to predict the nitrogen concentration-depth profile within the nitrided layer. The model describes the dependence on time and temperature of the nitrogen concentration-depth profiles with, as fit parameters, the surface nitrogen concentration, the diffusion coefficient of nitrogen in the matrix, a composition parameter of the formed nitride and the solubility product of the nitride-forming element and dissolved nitrogen in the matrix. Initial values for the surface nitrogen concentration and the composition parameter were determined experimentally with an absorption isotherm and fitted to the measured nitrogen concentration-depth profiles. The results obtained revealed the striking effects of the amount of excess nitrogen and the extent of precipitation hardening on the developing nitrogen concentration-depth profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号