首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The evaluation of microbial responses to three in situ source removal remedial technologies—permanganate‐based in situ chemical oxidation (ISCO), six‐phase heating (SPH), and steam injection (SI)—was performed at Cape Canaveral Air Station in Florida. The investigation stemmed from concerns that treatment processes could have a variety of effects on the indigenous biological activity, including reduced biodegradation rates and a long‐term disruption of community structure with respect to the stimulation of TCE (trichloroethylene) degraders. The investigation focused on the quantity of phospholipid fatty acids (PLFAs) and its distribution to determine the immediate effect of each remedial technology on microbial abundance and community structure, and to establish how rapidly the microbial communities recovered. Comprehensive spatial and temporal PLFA screening data suggested that the technology applications did not significantly alter the site's microbial community structure. The ISCO was the only technology found to stimulate microbial abundance; however, the biomass returned to predemonstration values shortly after treatment ended. In general, no significant change in the microbial community composition was observed in the SPH or SI treatment areas, and even small changes returned to near initial conditions after the demonstrations. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
In situ chemical oxidation (ISCO) typically delivers oxidant solutions into the subsurface for contaminant destruction. Contaminants available to the oxidants, however, are limited by the mass transfer of hydrophobic contaminants into the aqueous phase. ISCO treatments therefore often leave sites with temporarily clean groundwater which is subject to contaminant rebound when sorbed and free phase contaminants leach back into the aqueous phase. Surfactant Enhanced In situ Chemical Oxidation (S‐ISCO®) uses a combined oxidant‐surfactant solution to provide optimized contaminant delivery to the oxidants for destruction via desorption and emulsification of the contaminants by the surfactants. This article provides an overview of S‐ISCO technology, followed by an implementation case study at a coal tar contaminated site in Queens, New York. Included are data points from the site which demonstrate how S‐ISCO delivers desorbed contaminants without uncontrolled contaminant mobilization, as desorbed and emulsified contaminants are immediately available to the simultaneously injected oxidant for reaction. ©2016 Wiley Periodicals, Inc.  相似文献   

3.
In situ chemical oxidation (ISCO) has found widespread remedial application at sites that lack nonaqueous‐phase liquid (NAPL) or have a relatively small amount of contaminant mass. Historically, its use has been limited at sites with large amounts of NAPL, primarily because of cost considerations. Proper application of ISCO can expand its use at sites with substantial amounts of NAPL—particularly where it is being used to selectively remediate higher toxicity fractions or reduce the mobility of the NAPL itself through artificial weathering. Alone or in conjunction with conventional technologies, chemical oxidation provides a means for reducing the risk associated with NAPL and potentially closing impacted sites without completely removing NAPL. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Given the relatively rapid rate of dense nonaqueous‐phase liquid (DNAPL) ganglia depletion, source zones are generally dominated by horizontal layers of DNAPL after a release to the saturated zone. Estimating the time required to attain specific source strength reduction targets resulting from partial DNAPL source depletion is challenging due to a lack of available screening models, and because little has been done to synthesize available empirical data. Analytical and semi‐analytical models are used to study general DNAPL pool dissolution dynamics. The half‐life for the decline in DNAPL source strength (i.e., aqueous mass discharge) is demonstrated as proportional to the square root of the pool length, the thickness of the pool, and the solubility for single component DNAPLs. The through‐pool discharge is shown to be potentially significant for thin pools or in upper regions of thicker pools. An empirical analysis is used to evaluate average concentration decline rates for 13 in situ chemical oxidation (ISCO) and 16 enhanced in situ bioremediation (EISB) sites. Mean apparent decline rates, based on the time required to achieve the observed source strength reduction, are calculated for the ISCO and EISB sites (half‐lives of 0.39 year and 0.29 year, respectively). The empirical study sites are shown to have faster decline rates than for a large, complex study site where ISCO was implemented (half‐life of 2.5 years), and for a conceptual pool‐dominated trichloroethene source zone where EISB was simulated (half‐life of 2.5 years). Guidance is provided on using these findings in estimating timeframes for partial DNAPL depletion goals. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   

7.
This paper compiles a detailed set of in situ chemical oxidation (ISCO) lessons learned pertaining to design, execution, and safety based on global experiences over the last 20 years. While the benefits of a “correct” application are known (e.g., cost effectiveness, speed, permanence of treatment), history also provides examples of a variety of “incorrect” applications. These provide an opportunity to highlight recurring themes that resulted in failures. ISCO is, and will continue to provide, an important remedial tool for site remediation, particularly as a component of a multifaceted approach for addressing large and complex sites. Future success, however, requires an objective understanding of both the benefits and the limitations of the technology. The ability to learn from the mistakes of the past provides an opportunity to eliminate, or at least minimize, them in the future. Over the last 25 years of ISCO application, process understanding and knowledge have improved and evolved. This paper combines a thorough discussion of lessons learned through decades of ISCO implementation throughout all aspects of ISCO projects with an analysis of changes to the ISCO remediation market. By discussing the interplay of these two themes and providing recommendations from collective lessons learned, we hope to improve the future of safe, cost‐effective, and successful applications of ISCO.  相似文献   

8.
A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in‐situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1‐trichloroethane (TCA) and its daughter products, 1,1‐dichloroethene (DCE) and 1,1‐dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in‐situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short‐term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
The Army National Guard initiated an Innovative Technology Evaluation (ITE) Program in March 2000 to study potential remedial technologies for the cleanup of explosives‐contaminated soil and groundwater at the Camp Edwards site on the Massachusetts Military Reservation. The soil technologies chosen for the ITE program were: soil washing, chemical oxidation, chemical reduction, thermal desorption/destruction (LTTD), bioslurry, composting, and solid phase bioremediation. The technologies were evaluated based on their ability to treat both washed and untreated soil. A major factor considered was the ability to degrade explosives, such as RDX, found in particulate form in the soils. The heterogeneous nature of explosives in soils dictates that the preferred technology must be able to treat explosives in all forms, including the particulate form. Groundwater remediation technologies considered include: in situ cometabolic reduction, two forms of in situ chemical oxidation, Fenton‐like oxidation and potassium permanganate. This article presents the results of each of the remedial technologies evaluated and discusses which technologies met the established ITE performance goals. © 2003 Wiley Periodicals, Inc.  相似文献   

10.
Over the past 20 years, significant time and money have been spent on better understanding and successfully applying bioremediation in the field. The results of these efforts provide a deeper un‐derstanding of aerobic and anaerobic microbial processes, the microbial species and environ‐mental conditions that are desirable for specific degradation pathways, and the limitations that may prevent full‐scale bioremediation from being successfully applied in heterogeneous subsur‐face environments. Numerous substrates have been identified as effective electron donors to stimulate anaerobic dechlorination of chlorinated ethenes, but methods of delivering these sub‐strates for in situ bioremediation (direct‐push injections, slug injections, high‐pressure injections, fracture wells, etc.) have yet to overcome the main limitation of achieving contact between these substrates and the contaminants. Therefore, although it is important (from a full‐scale remedia‐tion standpoint) to select an appropriate, low‐cost substrate that can be supplied in sufficient quantity to promote remediation of a large source area and its associated plume, it is equally im‐portant to ensure that the substrate can be delivered throughout the impacted plume zone. Failure to achieve substrate delivery and contact within the chlorinated solvent plume usually re‐sults in wasted money and limited remediation benefit. Bioremediation is a contact technology that cannot be effectively implemented on a large scale unless a method for rapidly delivering the low‐cost substrate across the entire source and plume areas is utilized. Unfortunately, many cur‐rent substrate delivery methods are not achieving sitewide distribution or treatment of the sorbed contaminant mass that exists in the organic fraction of a soil matrix. The following discussion sum‐marizes substrate delivery using an aggressive groundwater recirculation approach that can achieve plumewide contact between the contaminants and substrate, thus accelerating dechlori‐nation rates and shortening the overall remediation time frame. © 2006 Wiley Periodicals, Inc.  相似文献   

11.
A pilot‐scale test was conducted in a saline aquifer to determine if a petroleum hydrocarbon (PHC) plume containing benzene (B), toluene (T), ethylbenzene (E), xylenes (X), methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) could be treated effectively using a sequential treatment approach that employed in situ chemical oxidation (ISCO) and enhanced bioremediation (EBR). Chemical oxidants, such as persulfate, have been shown to be effective in reducing dissolved concentrations of BTEX (B + T + E + X) and additives such as MTBE and TBA in a variety of geochemical environments including saline aquifers. However, the lifespan of the oxidants in saline environments tends to be short‐lived (i.e., hours to days) with their effectiveness being limited by poor delivery, inefficient consumption by nontargeted species, and back‐diffusion processes. Similarly, the addition of electron acceptors has also been shown to be effective at reducing BTEX and associated additives in saline groundwater through EBR, however EBR can be limited by various factors similar to ISCO. To minimize the limitations of both approaches, a pilot test was carried out in a saline unconfined PHC‐impacted aquifer to evaluate the performance of an engineered, combined remedy that employed both approaches in a sequence. The PHC plume had total BTEX, MTBE, and TBA concentrations of up to 4,584; 55,182; and 1,880 μg/L, respectively. The pilot test involved injecting 13,826 L of unactivated persulfate solution (19.4 weight percent (wt.%) sodium persulfate (Na2S2O8) solution into a series of injection wells installed within the PHC plume. Parameters monitored over a 700‐day period included BTEX, MTBE, TBA, sulfate, and sulfate isotope concentrations in the groundwater, and carbon and hydrogen isotopes in benzene and MTBE in the groundwater. The pilot test data indicated that the BTEX, MTBE, and TBA within the PHC plume were treated over time by both chemical oxidation and sulfate reduction. The injection of the unactivated persulfate resulted in short‐term decreases in the concentrations of the BTEX compounds, MTBE, and TBA. The mean total BTEX concentration from the three monitoring wells within the pilot‐test area decreased by up to 91%, whereas MTBE and TBA mean concentrations decreased by up to 39 and 58%, respectively, over the first 50 days postinjection in which detectable concentrations of persulfate remained in groundwater. Concentrations of the BTEX compounds, MTBE, and TBA rebounded at the Day 61 marker, which corresponded to no persulfate being detected in the groundwater. Subsequent monitoring of the groundwater revealed that the concentrations of BTEX continued to decrease with time suggesting that EBR was occurring within the plume. Between Days 51 and 487, BTEX concentrations decreased an additional 84% from the concentration measured on Day 61. Mean concentrations of MTBE showed a reduction during the EBR phase of remediation of 33% while the TBA concentration appeared to decrease initially but then increased as the sulfate concentration decreased as a result of MTBE degradation. Isotope analyses of dissolved sulfate (34S and 18O), and compound‐specific isotope analysis (CSIA) of benzene and MTBE (13C and 2H) supported the conclusions that ISCO and EBR processes were occurring at different stages and locations within the plume over time.  相似文献   

12.
With the successful implementation of in situ chemical oxidation (ISCO) programs to remediate contaminated soil and groundwater aquifers worldwide, ISCO has become established as a traditional remediation technique. On the basis of historical success, expanded ISCO practices are now routinely applied to increasingly difficult geologic environments, including formerly problem locations such as those containing nonaqueous‐phase liquid, fractured bedrock, low‐conductivity media, and highly layered and/or heterogeneous aquifers. Effective delivery of amendment, however, remains the single most important aspect of successful remediation, particularly given the range of potentially applicable delivery methods and site complexities. Selecting the most appropriate technique for any specific site depends upon a clear understanding of the variety of site constraints, including factors such as site conditions, underlying geology, contaminant distribution, technology limitations, and other project‐specific factors. Because the injection program is often the largest cost associated with implementation of an ISCO project, it is critical to develop a cost‐effective injection method for each site. Constant head injection provides a cost‐effective alternative for sites with low‐conductivity lithology(ies). Constant head injection employs a continuous low‐pressure application method to deliver ISCO agents over a long period of time. This synergistic method complements the existing site conditions and heterogeneity, working with the natural conditions, rather than trying to overcome or destroy the site geology using highly aggressive delivery techniques. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
In situ bioremediation (ISB) melds an understanding of microbiology, chemistry, hydrogeology, and engineering into a strategy for planned and controlled microbial degradation of specific contaminants. ISB creates subsurface environmental conditions, typically through reduction oxidation manipulation, which induce the degradation of contaminants via microbial catalyzed biochemical reactions. In turn, the microbes produce enzymes that are utilized to derive energy and that are instrumental in the degradation of target chemicals. To accomplish this chain of events, the type of microorganisms, contaminant, and the geological conditions at the site must be considered. Since in situ conditions are manipulated by engineered means, the most important consideration is the ability to transmit and mix liquids in the subsurface. The Interstate Technology Regulatory Council (ITRC)–ISB Team has recently completed a guidance document that describes a systematic approach to ISB in groundwater. ITRC is a state‐led coalition of more than 40 states working together with industry and stakeholders to achieve regulatory acceptance of environmental technologies. © 2003 Wiley Periodicals, Inc.  相似文献   

15.
Since carbon compounds are the main component of dense nonaqueous phase liquids (DNAPLs), the end products of all in situ chemical oxidation (ISCO) will include carbon dioxide. If the production rate of carbon dioxide exceeds the capacity of water to remove the carbon dioxide, degassing will occur. The uncontrolled carbon dioxide gas may change the flow patterns, remobilize the pooled DNAPL, transport DNAPL vapor, and reduce the relative permeability to the aqueous phase. Under high pH buffered conditions, most of the carbon dioxide will be dissolved in water. In this study, potassium permanganate oxidation of tetrachloroethylene (PCE) was conducted using a sodium carbonate buffered solution (1 g/L, pH = 10.6 ± 0.1) at three different temperatures (5, 10, and 20°C) and three potassium permanganate concentrations (0.2, 1, and 5 g/L). Extensive kinetic studies suggest that the overall oxidation is a second‐order reaction and pseudo‐first‐order with respect to PCE and potassium permanganate, respectively. The second‐order rate constant and the activation energy were 0.028 ± 0.001 M?1s?1 at 20°C and 43.9 ± 2.85 kJ/M, respectively. This study provides a base for further experimental and field studies on potassium permanganate oxidation of PCE under natural or artificial high pH buffered conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

16.
It is difficult to quantify the range in source strength reduction (MdR) that may be attainable from in situ remediation of a dense nonaqueous‐phase liquid (DNAPL) site given that available studies typically report only the median MdR without providing insights into site complexity, which is often a governing factor. An empirical study of the performance of in situ remediation at a wide range of DNAPL‐contaminated sites determined MdRs for in situ bioremediation (EISB), in situ chemical oxidation (ISCO), and thermal treatment remedies. Median MdR, geometric mean MdR, and lower/upper 95 percent confidence interval for the mean were: 49x, 105x, 20x/556x, respectively, for EISB; 9x, 21x, and 4x/110x for ISCO; and 19x, 31x, and 6x/150x for thermal treatment. Lower MdR values were determined for large, complex sites and for sites with DNAPL pool‐dominated source zones. A feasibility analysis of partial DNAPL depletion is described for a pool‐dominated source zone. Back‐diffusion from low‐hydraulic conductivity units within a pool‐dominated source zone is shown to potentially sustain a secondary source for more than 1,000 years, indicating that aggressive source treatment may not reduce the remediation timeframe. Estimated plume response demonstrates there may be no reduction in cost associated with aggressive treatment, and little difference in risk reduction associated with the various alternatives. Monitored natural attenuation (MNA) for the source zone is shown to be a reasonable alternative for the pool‐dominated source zone considered in this example. It is demonstrated that pool‐dominated source zones with a large range in initial DNAPL mass (250 to 1,500 kg) may correspond to a narrow range in source strength (20 to 30 kg/year). This demonstrates that measured source strength is nonunique with respect to DNAPL mass in the subsurface and, thus, source strength should not be used as the sole basis for predicting how much DNAPL mass remains or must be removed to achieve a target goal. If aggressive source zone treatment is to be implemented due to regulatory requirements, strategic pump‐and‐treat is shown to be most cost effective. These remedial decisions are shown to be insensitive to a range of possible DNAPL pool conditions. At sites with an existing pump‐and‐treat system, a significant increase in mass removal and source strength reduction may be achieved for a low incremental cost by strategic placement of extraction wells and pumping rate selection. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
有机污染土壤原位化学氧化药剂投加方式的综述   总被引:1,自引:0,他引:1       下载免费PDF全文
原位化学氧化技术是修复有机污染土壤最经济有效的技术之一。药剂的投加与分散技术是原位化学氧化修复技术的核心。药剂投加与分散方式的选择与污染场地的土壤渗透性、特征水平、污染深度、氧化剂性质、修复费用等相关。阐述了直压式注射法、注射井法、土壤置换法和高压-旋喷注射法等药剂投加与分散技术的适用性、控制参数及优缺点等,引用工程实例对药剂投加与分散技术在原位化学氧化修复过程中的应用情况进行了论证。  相似文献   

19.
1,4‐Dioxane (dioxane) is a contaminant of emerging concern that is classified by the U.S. Environmental Protection Agency as a likely human carcinogen. Dioxane has been used as a minor or major ingredient in many applications, and is also generated as an unwanted by‐product of industrial processes associated with the manufacturing of polyethylene, nonionic surfactants, and many consumer products (cosmetics, laundry detergents, shampoos, etc.). Dioxane is also a known stabilizer of chlorinated solvents, particularly 1,1,1‐trichloroethane, and has been commonly found comingled with chlorinated solvent plumes. Dioxane plumes at chlorinated solvent sites can complicate site closure strategies, which to date have not typically focused on dioxane. Aggressive treatment technologies have greatly advanced and are clearly capable of achieving lower parts per billion cleanup criteria using ex situ advanced oxidation processes and sorption media. In situ chemical oxidation has also been demonstrated to effectively remediate dioxane and chlorinated solvents. Other in situ remedies, such as enhanced bioremediation, phytoremediation, and monitored natural attenuation, have been studied; however, their ability to achieve cleanup levels is still somewhat questionable and is limited by co‐occurring contaminants. This article summarizes and provides practical perspectives on dioxane analysis, plume stability relative to other contaminants, and the development of investigation tools and treatment technologies.  相似文献   

20.
A new approach to the maintenance of large microbial populations for bioremediation purposes has been developed in which a centrifugal bioreactor is used to immobilize microbial populations at extremely high density. The cells are ordered into a three‐dimensional array through which wastewater or groundwater volumes may be flowed, unimpeded by frits or screens. The process methodology is independent of the type, shape, or viability of the individual cells immobilized and, thus, may be adapted to many different bioremediation needs. The utilization of this new process has been explored for three different types of remediation: the removal of heavy metals from wastewater, the aerobic degradation of methyl‐tert‐butyl ether (MTBE), and the anaerobic reduction of nitrate to nitrogen gas. This article discusses the use of centrifugal bioreactors and their application in remediation. © 2001 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号