首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用溶胶-凝胶法制备了V_2O_5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了其微观结构。结果表明,该复合电极材料是含有质量分数0.55%石墨烯的片状正交相V_2O_5。电化学测试表明,与未复合石墨烯的纯V_2O_5样品相比,V_2O_5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 m A/g的电流密度下,V_2O_5/石墨烯复合材料和纯V_2O_5样品的放电比容量分别为283和253 m A·h/g;当电流密度增加到5 A/g时,V_2O_5/石墨烯复合材料依然保持有150 m A·h/g的放电比容量,而纯V_2O_5样品的放电比容量仅为114 m A·h/g;V_2O_5/石墨烯和纯V_2O_5电极的电荷传递电阻分别为142和293Ω。V_2O_5/石墨烯//Li4Ti5O12全电池测试结果表明,在1.0~2.5 V电压内,循环初期全电池正极材料的放电比容量从110 m A·h/g衰减到96 m A·h/g,随后又出现上升,循环100次后,正极材料的放电比容量稳定在102 m A·h/g,库伦效率接近100%,表明V_2O_5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

2.
采用简便的溶胶凝胶法制备了V2O5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了样品的微观结构,以V2O5/石墨烯复合材料和Li4Ti5O12分别作为正极和负极组装了V2O5/石墨烯 // Li4Ti5O12全电池。结果表明,该复合电极材料是含有0.55%(质量分数)石墨烯的片状正交相V2O5。电化学测试表明,与未复合石墨烯的纯V2O5样品相比,V2O5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 mA/g的电流密度下,V2O5/石墨烯复合材料和纯V2O5样品的放电比容量分别为283 mAh/g和253 mAh/g;当电流密度增加到5 A/g时,V2O5/石墨烯复合材料依然保持有150 mAh/g的放电比容量,而纯V2O5样品的放电比容量仅为114 mAh/g;V2O5/石墨烯和纯V2O5电极的电荷传递电阻分别为142 Ω和293 Ω。V2O5/石墨烯 // Li4Ti5O12全电池测试结果表明,在1.0 ~2.5 V电压范围内,循环初期全电池正极材料的放电比容量从110 mAh/g衰减到96 mAh/g,随后又出现上升,循环100次后正极材料的放电比容量稳定在102 mAh/g,库伦效率接近100%,这表明该V2O5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

3.
《炭素》2016,(2)
采用超临界CO_2流体辅助分散技术,合成制备了Fe_2O_3/石墨烯复合材料,通过透射电子显微镜(TEM)表征结果可以看出,Fe_2O_3纳米粒子均匀的负载于石墨烯片层之上,利用其与石墨烯的协同效应,改善各自的固有缺点,增强材料的性能。X-射线能谱(XPS)和X-射线衍射(XRD)结果表明Fe_2O_3和石墨烯之间复合较为完好,且石墨烯结构较为完整,能够大大提升复合材料的导电性。将制得的增强Fe_2O_3/石墨烯复合材料用于超级电容器电极材料,通过循环伏安(CV),恒电流充放电(GCD)和交流阻抗(EIS)测试可知,电容器表现出了优异的赝电容性能,在电流密度为1 A/g时,其比电容量可以达到596 F/g,显示了优异的电化学储能性能。  相似文献   

4.
针对炭材料和金属氧化物单独作为电极材料存在的不足,以纳米炭纤维作为基底,通过水热法在纳米炭纤维上同时负载炭黑(CB)和钴酸镍(NiCo_2O_4)纳米线,进一步热处理制备了NiCo_2O_4/炭黑@纳米炭纤维自支撑复合电极。在复合电极材料中,纳米炭纤维网络提供了三维电子传导通道,钴酸镍提供了较高的比电容,炭黑显著地提高了NiCo_2O_4的导电性。通过调整沉积时间有效调节了活性物质的负载量,所得电极显示出优异的导电性(35.3 S·m~(-1)),在1 A·g~(-1)的电流密度下比电容达到846 F·g~(-1),且具有优良的循环稳定性。优异的电容性能使NiCo_2O_4/炭黑@纳米炭纤维复合电极有望成为下一代超级电容器的电极材料。  相似文献   

5.
以石墨烯(GE)和氧化铝(Al_2O_3)为导热填料,三元共聚尼龙(CO-PA)为基体,硅烷偶联剂KH-550为表面改性剂,通过溶液共混的方法制备了石墨烯/氧化铝/三元共聚尼龙导热复合材料。XRD和SEM分析表明,GE、Al_2O_3的加入改变了尼龙的结晶晶型; DSC与TGA分析表明,GE与Al_2O_3的填料体系降低了尼龙的结晶性能,同时复合材料的热稳定性得到提高;热导率测试结果表明,填料的添加使复合材料的热导率得到较为明显的提高,当Al_2O_3的添加量为50%,GE添加量8%时,复合材料的热导率提高了8. 8倍;力学测试表明,低含量的导热填料能够提高复合材料的力学性能,当Al_2O_3添加量为50%,GE含量为1%时,复合材料的屈服强度提高了62. 1%,当Al_2O_3添加量为30%时,复合材料的拉伸强度提高了21. 2%。  相似文献   

6.
刘沛静  辛福恩 《化学工程师》2020,34(4):75-78,83
本文通过一步电沉积法在预处理的泡沫镍表面原位生长针状镍钴双金属氧化物,制备得到高负载量的正极材料NiCo_2O_4。对比文献报道,预处理的泡沫镍表面存在细小的孔道结构不仅具备模板作用,而且该模板能够提高单位面积上活性物质的负载量时,具有一定电容贡献,不用二次剔除,制备方法简单高效。经过电化学测试,活性材料NiCo_2O_4的负载量为5.24mg·cm~(-2)时,NiCo_2O_4-泡沫镍电极在1A·g~(-1)的电流密度下,获得高的质量比电容为773F·g~(-1),在0.5A·g~(-1)的电流密度下,充放电测试3000圈,电容保持率为75%。显示该电极材料具有高的质量比电容和较好的循环使用寿命,该方法制备NiCo_2O_4-泡沫镍电极在超级电容器领域具有广泛的应用前景和一定的普适性。  相似文献   

7.
以FeSiAl片状磁粉、膨胀石墨为主要原料,采用水热法制备石墨烯/Fe_3O_4/FeSiAl复合材料。通过XRD、SEM、Raman、FTIR和矢量网络分析仪(VNA)对石墨烯/Fe_3O_4/FeSiAl复合材料的晶相、微观形貌和吸波性能进行了表征和分析。结果表明:通过水热还原法,将氧化石墨烯还原成石墨烯,并且生成的石墨烯及Fe_3O_4颗粒均匀包覆在FeSiAl片状磁粉上,这种片状和颗粒状不同结构的复合,制备出了兼具磁损耗和介电损耗的吸波材料。在0.2~2.66 GHz频段内,当氧化石墨烯和FeSiAl质量比为1∶9,相应匹配厚度为2 mm时,石墨烯/Fe_3O_4/FeSiAl复合材料在2.56 GHz处最小反射率可达到–17 dB,其有效吸收频带范围(反射率小于–10 dB)为2.27~2.66 GHz。随着氧化石墨烯与FeSiAl质量比的增加,石墨烯/Fe_3O_4/FeSiAl复合材料的有效吸收频带向高频移动,有助于该吸波材料在高频段的应用。  相似文献   

8.
通过溶胶-凝胶法合成了双钙钛矿型氧化物Sr_2Ni_(0.4)Co_(1.6)O_6、通过改性Hummers还原方法制备出薄层石墨烯,并制备单一物质和两者复合材料的双功能氧电极,用于测试其氧催化性能。采用XRD、EDS、SEM、FTIR对样品进行表征。结果显示:Sr_2Ni_(0.4)Co_(1.6)O_6均匀地分布于薄层石墨烯片层表面。电化学性能测试结果表明:单一Sr_2Ni_(0.4)Co_(1.6)O_6和薄层石墨烯的氧还原反应(ORR)最大电流密度分别为0.1830、0.1516A/cm~2 (–0.6Vvs.Hg/Hg O),氧析出反应(OER)最大电流密度分别为0.2677、0.1174 A/cm~2 (1 V vs. Hg/HgO)。当薄层石墨烯添加量占复合催化剂质量的10%时,复合催化剂的氧催化性能最佳,ORR最大电流密度为0.2901 A/cm~2(–0.6Vvs.Hg/Hg O),OER最大电流密度为0.3905 A/cm~2 (1 V vs. Hg/HgO),明显高于单一催化剂。  相似文献   

9.
以FeCl_3·6H_2O和FeCl_2·4H_2O为铁源,以Na OH溶液为沉淀剂,选择共沉淀法制备Fe_3O_4∕石墨烯复合物。以Fe(2+)和Fe(2+)和Fe(3+)的浓度作为变量制得5种不同比例的Fe_3O_4/石墨烯纳米复合材料,然后将所得复合材料压制成电极片,组装成超级电容器后进行循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试,探究Fe_3O_4与石墨烯的含量比对复合材料电化学性能的影响。结果表明,当FeCl_3·4H_2O和FeCl_2·4H_2O用量分别为0.456 g和0.665 g,氧化石墨烯用量为150 mg时,所制备复合材料的电化学性能最佳,比电容可达510 F/g。  相似文献   

10.
以FeCl_3·6H_2O和FeCl_2·4H_2O为铁源,以Na OH溶液为沉淀剂,选择共沉淀法制备Fe_3O_4∕石墨烯复合物。以Fe~(2+)和Fe~(3+)的浓度作为变量制得5种不同比例的Fe_3O_4/石墨烯纳米复合材料,然后将所得复合材料压制成电极片,组装成超级电容器后进行循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试,探究Fe_3O_4与石墨烯的含量比对复合材料电化学性能的影响。结果表明,当FeCl_3·4H_2O和FeCl_2·4H_2O用量分别为0.456 g和0.665 g,氧化石墨烯用量为150 mg时,所制备复合材料的电化学性能最佳,比电容可达510 F/g。  相似文献   

11.
为了改善活性炭纤维的电化学性能、提高比电容,以硝酸镍和硝酸钴为金属源、尿素为碱源,采用水热法对一步活化法制备出的PAN基活性炭纤维(ACF)进行修饰,使其表面均匀负载海胆状的镍钴氧化物(ACF/NiCo_2O_4),通过扫描电镜、X射线衍射等对样品进行形貌和成分表征,采用三电极体系对材料进行电化学性能测试。结果表明,在1 A/g的电流密度下,其质量比电容达到469. 4 F/g,而电压降只有-0. 004 5 V,恒流充放电循环5 000圈后,其电容保持率为97. 87%,证明ACF/NiCo_2O_4材料具有较大的比电容和良好的循环稳定性,可用作超级电容器电极材料。  相似文献   

12.
用溶胶-凝胶法制备Z型钡铁氧体,将还原氧化石墨烯与Z型铁氧体复合制得Ba_3Co_2Fe_(24)O_(41)/石墨烯复合吸波材料,再用稀土La部分替代Ba制得Ba_(2.7)La_(0.3)Co_2Fe_(24)O_(41)/石墨烯复合材料。测试材料的电磁性能及微波吸收性能发现,复合石墨烯可以大幅度提升Z型铁氧体的介电常数虚部及吸波性能,且La替代Ba后,样品的介电常数虚部和微波吸收量得到进一步提升。Ba_(2.7)La_(0.3)Co_2Fe_(24)O_(41)/石墨烯复合材料平均微波吸收量由Z型铁氧体的22.30 dB增加到37.41 dB,吸收峰值由34.91dB增加到47.87dB,这使其成为一种很有潜力的吸波材料。  相似文献   

13.
以Al_2O_3为原料,采用水热反应,通过基于静电引力的自组装机制,制备Al_2O_3/石墨烯e(GS)复合粉体。通过Fourier变换红外光谱、X射线衍射、扫描电子显微镜和透射电子显微镜等对Al_2O_3/GS复合粉体的物相组成和显微结构进行表征。采用热压烧结技术制备了Al_2O_3/GS复合陶瓷。研究了不同含量GS对复合材料性能的影响,测试了材料的室温力学性能。结果表明,当GS在Al_2O_3/GS复合粉体中的质量分数为0.75%时,复合陶瓷具有最高的抗弯强度和断裂韧性,其值分别为460.8 MPa和7.9 MPa·m~(1/2)。  相似文献   

14.
《塑料》2019,(5)
采用固相剪切碾磨技术制备了由石墨烯(GE)和低聚倍半硅氧烷(POSS)组成的复合协效剂协效膨胀阻燃聚丙烯(PP)复合材料。采用极限氧指数(LOI)、UL94垂直燃烧、微型量热(MCC)、扫描电镜(SEM)、力学测试等方法,研究了阻燃PP复合材料的结构与性能。结果表明,GE明显提高了阻燃PP材料的阻燃性能。与PP/RMAPP/POSS(80/19/1)相比,PP/RMAPP/POSS/GE(80/18. 8/1/0. 2)的最大热释放速率(PHRR)降低了33%,垂直燃烧水平提高至UL-94 V0级。此外,当GE添加量为0. 2%时,与未碾磨PP阻燃材料相比,碾磨制备的PP阻燃材料的极限氧指数由27. 0%提高至29. 5%,拉伸强度由29. 2 MPa提高至33. 5 MPa,因此,磨盘碾磨强大的三维剪切力场作用,可以改善阻燃剂在PP基体中的分散性和界面相容性,提高PP阻燃材料的阻燃性能和力学性能。  相似文献   

15.
利用Ti(SO4)2水解,在氧化石墨烯层间成核生长纳米Ti O2颗粒,制得Ti O2/氧化石墨烯复合材料,再通过还原反应制得Ti O2/石墨烯复合材料。通过XRD、FTIR、FE-SEM、HR-TEM等测试手段对复合材料进行表征。在可见光照射下,以复合材料为工作电极,光电催化降解酸性红B,研究复合材料的催化性能及反应动力学。结果表明:复合材料具有优良的可见光响应能力和光电催化能力。在外加电极电位为+0.05 V,30 min内的光电催化降解效率为1.08 mg/(min·g)。催化反应为一级反应,其活化能为24.55 k J/mol。  相似文献   

16.
研究了石墨烯协同Al_2O_3导热PA6,考察石墨烯协同Al_2O_3作为导热材料不同配比对高导热PA6复合材料的力学性能、导热性能等性能影响以及热变形温度分析。实验结果表明:从材料的导热、机械性能及经济效益出发,当PA6/Al_2O_3/石墨烯为100/35/15时,导热PA6复合材料导热系数为2.14 W/(m.K),拉伸强度69.2 MPa,断裂伸长率3.7%,缺口冲击强度13.1 k J/m2,热变形温度86℃,综合性能最为均衡。  相似文献   

17.
采用水热法成功制备了Li_4Ti_5O_(12)/石墨烯纳米复合材料,用XRD,SEM等手段对复合材料的结构和形貌进行表征,分析结果表明纳米Li_4Ti_5O_(12)颗粒完整且分布均匀,与石墨烯交叠在一起,有效地阻止了双方的团聚;通过恒流充放电测试对其电化学性能进行分析研究,结果表明Li_4Ti_5O_(12)/石墨烯的储锂性能优于钛酸锂,30次循环后,可逆容量为260m Ah/g,循环性能优异;石墨烯量越大,Li_4Ti_5O_(12)/石墨烯纳米复合材料的可逆容量越高。  相似文献   

18.
采用水热法制备出Zn Sn(OH)6/石墨烯复合光催化材料,利用XRD、FT-IR、UV-vis DRS和BET对样品的结构和形貌进行了表征。以亚甲基蓝为模拟污染物考察了复合材料的光催化性能。结果表明,当石墨烯质量分数为3%时,Zn Sn(OH)6/石墨烯复合材料的光催化性能最优,紫外照射100 min后,对亚甲基蓝降解率达到98.1%,比纯Zn Sn(OH)6光催化活性提高了1.74倍。经过5次循环使用后依然有96.4%的降解率。Zn Sn(OH)6/石墨烯复合光催化材料对工业染料分散黄、活性红和酸性蓝也有很好的降解活性,说明Zn Sn(OH)6/石墨烯复合材料具有很好的普适性。  相似文献   

19.
采用碳辅助法和原位沉降法将Co_3O_4与石墨相氮化碳(g-C_3N_4)进行复合得到Co_3O_4/g-C3N4复合材料。利用XRD、SEM、TEM等多种表征手段对Co_3O_4和Co_3O_4/g-C_3N_4复合材料进行表征。结果表明,Co_3O_4均匀分布在g-C_3N_4片层中形成了(2D-3D)新型结构。电化学性能测试结果表明,Co_3O_4/g-C_3N_4复合材料电流密度为1 A/g时,比电容达到1 071 F/g,比纯Co_3O_4提升4.9倍;在电流密度为10 A/g时,经过1 000次循环,比电容仍能保持95.5%。  相似文献   

20.
将石墨烯和二硫化钼(MoS_2)的复合粉体加入到E-44环氧树脂中并以650低分子质量聚酰胺固化,制备了复合材料。通过力学性能、耐磨性测试研究了复合粉体中石墨烯含量及复合粉体用量对材料性能的的影响。结果表明,粉体中石墨烯质量分数为20%时材料的弯曲强度达到最大值35.73 MPa,较只掺加MoS_2的体系提高了77%,而复合材料的固液比不宜超过1∶20。石墨烯/MoS_2复合粉体对环氧复合材料的力学强度、断裂韧性以及耐磨性能均有明显的改善作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号