首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The drinking water industry is closely examining options to maintain disinfection in distribution systems. In particular this research compared the relative efficiency of the chlorite ion (ClO2-) to chlorine dioxide (ClO2) for biofilm control. Chlorite levels were selected for monitoring since they are typically observed in the distribution system as a by-product whenever chlorine dioxide is applied for primary or secondary disinfection. Previous research has reported the chlorite ion to be effective in mitigating nitrification in distribution systems. Annular reactors (ARs) containing polycarbonate and cast iron coupons were used to simulate water quality conditions in a distribution system. Following a 4 week acclimation period, individual ARs operated in parallel were dosed with high (0.25mg/l) and low (0.1mg/l) chlorite concentrations and with high (0.5 mg/l) and low (0.25mg/l) chlorine dioxide concentrations, as measured in the effluent of the AR. Another set of ARs that contained cast iron and polycarbonate coupons served as controls and did not receive any disinfection. The data presented herein show that the presence of chlorite at low concentration levels was not effective at reducing heterotrophic bacteria. Log reductions of attached heterotrophic bacteria for low and high chlorite ranged between 0.20 and 0.34. Chlorine dioxide had greater log reductions for attached heterotrophic bacteria ranging from 0.52 to 1.36 at the higher dose. The greatest log reduction in suspended heterotrophic bacteria was for high dose of ClO2 on either cast iron or polycarbonate coupons (1.77 and 1.55). These data indicate that it would be necessary to maintain a chlorine dioxide residual concentration in distribution systems for control of microbiological regrowth.  相似文献   

2.
Son H  Cho M  Kim J  Oh B  Chung H  Yoon J 《Water research》2005,39(4):721-727
To the best of our knowledge, this study is the first investigation to be performed into the potential benefits of mechanically mixed disinfectants in controlling bacterial inactivation. The purpose of this study was to evaluate the disinfection efficiency of mechanically mixed oxidants with identical oxidant concentrations, which were made by adding small amounts of subsidiary oxidants, namely ozone (O3), chlorine dioxide (ClO2), hydrogen peroxide (H2O2) and chlorite (ClO2(-)), to free available chlorine (Cl2), using Bacillus subtilis spores as the indicator microorganisms. The mechanically mixed oxidants containing Cl2/O3, Cl2/ClO2 and Cl2/ClO2(-) showed enhanced efficiencies (of up to 52%) in comparison with Cl2 alone, whereas no significant difference was observed between the mixed oxidant, Cl2/H2O2, and Cl2 alone. This enhanced disinfection efficiency can be explained by the synergistic effect of the mixed oxidant itself and the effect of intermediates such as ClO2(-)/ClO2, which are generated from the reaction between an excess of Cl2 and a small amount of O3/ClO2(-). Overall, this study suggests that mechanically mixed oxidants incorporating excess chlorine can constitute a new and moderately efficient method of disinfection.  相似文献   

3.
Wang X  Hu X  Wang H  Hu C 《Water research》2012,46(4):1225-1232
The effectiveness of UV and chlorination, used individually and sequentially, was investigated in killing pathogenic microorganisms and inhibiting the formation of disinfection by-products in two different municipal wastewaters for the source water of reclaimed water, which were from a microfilter (W1) and membrane bioreactor (W2) respectively. Heterotrophic plate count (HPC), total bacteria count (TBC), and total coliform (TC) were selected to evaluate the efficiency of different disinfection processes. UV inactivation of the three bacteria followed first-order kinetics in W1 wastewater, but in W2 wastewater, the UV dose-response curve trailed beyond approximately 10 mJ/cm2 UV. The higher number of particles in the W2 might have protected the bacteria against UV damage, as UV light alone was not effective in killing HPC in W2 wastewater with higher turbidity. However, chlorine was more effective in W2 than in W1 for the three bacteria inactivation owing to the greater formation of inorganic and organic chloramines in W1 wastewater. Complete inactivation of HPC in W1 wastewater required a chlorine dose higher than 5.5 mg/L, whereas 4.5 mg/L chlorine gave the equivalent result in W2 wastewater. In contrast, sequential UV and chlorine treatment produced a synergistic effect in both wastewater systems and was the most effective option for complete removal of all three bacteria. UV disinfection lowered the required chlorine dose in W1, but not in W2, because of the higher chlorine consumption in W2 wastewater. However, UV irradiation decreased total trihalomethane formation during chlorination in both wastewaters.  相似文献   

4.
This study used annular reactors (AR) to investigate, under controlled laboratory conditions, the effects of temperature and biodegradable organic matter (BOM) on the free chlorine residual needed to control biofilm accumulation, as measured by heterotrophic plate count (HPC) bacteria. Biofilm was grown on PVC coupons, initially in the absence of chlorine, at 6, 12, and 18 degrees C, in the presence and absence of a BOM supplement (250 microg C/L) added as acetate. During the early stages of chlorine addition, when no measurable free chlorine residual was present, a reduction in biofilm HPC numbers was observed. Subsequently, once sufficient chlorine was added to establish a residual, the biofilm HPC numbers expressed as log CFU/cm2 fell exponentially with the increase in free chlorine residual. Temperature appeared to have an important effect on both the chlorine demand of the system and the free chlorine residual required to control the biofilm HPC numbers to the detection limit (3.2 Log CFU/cm2). For the water supplemented with BOM, a strong linear correlation was found between the temperature and the free chlorine residual required to control the biofilm. At 6 degrees C, the presence of a BOM supplement appeared to substantially increase the level of free chlorine residual required to control the biofilm. The results of these laboratory experiments provide qualitative indications of effects that could be expected in full-scale systems, rather than to make quantitative predictions.  相似文献   

5.
Wang H  Hu C  Hu X  Yang M  Qu J 《Water research》2012,46(4):1070-1078
The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe2O3, while CaPO3(OH)·2H2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers.  相似文献   

6.
Pozos N  Scow K  Wuertz S  Darby J 《Water research》2004,38(13):3083-3091
Two model distribution systems were operated in parallel to investigate the impact of UV disinfection on water distribution system biofilms and microbial community composition. One system received an influent irradiated with UV light, whereas the control received the same influent with no treatment. The biofilm in the UV system, as compared to the control, was more responsive (i.e., had a greater increase in steady-state density of heterotrophic bacteria) to the increased nutrient availability afforded by a decrease in HRT from 12 to 2 h. However, the UV treatment did not have a consistent impact on the biofilm community, indicating the processes controlling HPC density were independent of the specific strains of bacteria forming the biofilm. There was evidence that particle shielding contributed to the survival of UV-susceptible bacteria. This hypothesis was consistent with the presence of UV-susceptible bacteria in the UV system, as well as the high similarity of the biofilm communities in the UV and control systems in one of the experiments. To simulate an intrusion event, opportunistic pathogens were added to each system after the biofilm community reached steady-state. Opportunistic pathogen attachment was not affected by the UV treatment, but was instead correlated to the biofilm density of heterotrophic bacteria.  相似文献   

7.
Murphy HM  Payne SJ  Gagnon GA 《Water research》2008,42(8-9):2083-2092
This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.  相似文献   

8.
二氧化氯对水中细菌的灭菌效果   总被引:18,自引:0,他引:18  
通过对不同消毒剂投量、接触时间和PH值等条件研究,证明ClO2来菌效果优于或相当于液氯。ClO2可在广泛的PH值范围内具有较强的灭菌能力,而液氯仅在PH6.8-8.5范围内具有较强的灭菌能力。还初步探讨了ClO2对细菌的杀灭机理。研究结果表明,ClO2是一种优良的替代消毒剂。  相似文献   

9.
Mechanisms of Escherichia coli inactivation by several disinfectants   总被引:1,自引:0,他引:1  
The objective of this study was to elucidate dominant mechanisms of inactivation, i.e. surface attack versus intracellular attack, during application of common water disinfectants such as ozone, chlorine dioxide, free chlorine and UV irradiation. Escherichia coli was used as a representative microorganism. During cell inactivation, protein release, lipid peroxidation, cell permeability change, damage in intracellular enzyme and morphological change were comparatively examined. For the same level of cell inactivation by chemical disinfectants, cell surface damage was more pronounced with strong oxidant such as ozone while damage in inner cell components was more apparent with weaker oxidant such as free chlorine. Chlorine dioxide showed the inactivation mechanism between these two disinfectants. The results suggest that the mechanism of cell inactivation is primarily related to the reactivity of chemical disinfectant. In contrast to chemical disinfectants, cell inactivation by UV occurred without any changes measurable with the methods employed. Understanding the differences in inactivation mechanisms presented herein is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies.  相似文献   

10.
Apart from well-known chlorites and chlorates, chlorine dioxide also generates easily biodegradable carbonyl compounds and short chain carboxylic acids during water disinfection. The main goal of the presented study was to examine the influence of natural organic matter (NOM) oxidation with chlorine dioxide, on the quantity as well as the quality of formed biodegradable by-products. In the experiments conducted at the pilot plant the sand filtered water (MWI) and ozonated/biofiltrated water (BAF) were oxidised with ClO2. The amount of BDOC formed as a result of the oxidation of both waters with ClO2 was compared. The results showed considerable differences in formation of ClO2 oxidation by-products between non-ozonated and ozonated/biofiltered waters. The disinfection of ozonated/biofiltrated water with ClO2 generated comparable amounts of aldehydes and much higher amounts of carboxylic acids than ClO2 oxidation of sand filtered water. These findings are essential for waterworks with ozonation/biofiltration units and ClO2 disinfection implemented.  相似文献   

11.
The diffusion of a chemical disinfectant into wastewater particles may be viewed as a serial two-step process involving transport through a macroporous network of pathways to micropores that lead into dense cellular regions. Previous research reveals that ultraviolet (UV) light penetration into wastewater particles is limited primarily to macropores, resulting in a residual concentration of targeted organisms in post-disinfected effluents that reflects the number of organisms embedded in the dense cellular regions of particles. Conversely, chlorine was demonstrated as part of this research to penetrate into both the macroporous and microporous network of pathways, implying that the application of chlorine may be designed feasibly to achieve a desired level of inactivation of particle-associated organisms. In the short term, a disinfection model previously developed for UV irradiation may be used to assess the inactivation of particle-associated organisms with chlorine. However, in the long-term, a more rigorous and complete understanding of the transport of chemical disinfectants into particles can be explored utilizing existing mathematical expressions commonly used to model mass transport into porous media. The parameters of interest in this modeling approach include the reaction rate of chlorine with particulate material, the diffusion rate of chlorine within a particle, the mass-transfer rate coefficient across the particle's boundary, and the particle porosity.  相似文献   

12.
Oxidation of pharmaceuticals during water treatment with chlorine dioxide   总被引:9,自引:0,他引:9  
The potential of chlorine dioxide (ClO2) for the oxidation of pharmaceuticals during water treatment was assessed by determining second-order rate constants for the reaction with selected environmentally relevant pharmaceuticals. Out of 9 pharmaceuticals only the 4 following compounds showed an appreciable reactivity with ClO2 (in brackets apparent second-order rate constants at pH 7 and T = 20 degrees C): the sulfonamide antibiotic sulfamethoxazole (6.7 x 10(3) M(-1) s(-1)), the macrolide antibiotic roxithromycin (2.2 x 10(2) M(-1) s(-1)), the estrogen 17alpha-ethinylestradiol (approximately 2 x 10(5) M(-1) s(-1)), and the antiphlogistic diclofenac (1.05 x 10(4) M(-1) s(-1)). Experiments performed using natural water showed that ClO2 also reacted fast with other sulfonamides and macrolides, the natural hormones estrone and 17beta-estradiol as well as 3 pyrazolone derivatives (phenazone, propylphenazone, and dimethylaminophenazone). However, many compounds in the study were ClO2 refractive. Experiments with lake water and groundwater that were partly performed at microgram/L to nanogram/L levels proved that the rate constants determined in pure water could be applied to predict the oxidation of pharmaceuticals in natural waters. Compared to ozone, ClO2 reacted more slowly and with fewer compounds. However, it reacted faster with the investigated compounds than chlorine. Overall, the results indicate that ClO2 will only be effective to oxidize certain compound classes such as the investigated classes of sulfonamide and macrolide antibiotics, and estrogens.  相似文献   

13.
Hua G  Reckhow DA 《Water research》2007,41(8):1667-1678
Seven diverse natural waters were collected and treated in the laboratory under five oxidation scenarios (chlorine, chloramine, both with and without preozonation, and chlorine dioxide). The impact of these disinfectants on the formation of disinfection byproducts was investigated. Results showed that preozonation decreased the formation of trihalomethanes (THMs), haloacetic acids (HAAs) and total organic halogen (TOX) for most waters during postchlorination. A net increase in THMs, HAAs and TOX was observed for a water of low humic content. Either decreases or increases were observed in dihaloacetic acids and unknown TOX (UTOX) as a result of preozonation when used with chloramination. Chloramines and chlorine dioxide produced a higher percentage of UTOX than free chlorine. They also formed more iodoform and total organic iodine (TOI) than free chlorine in the presence of iodide. Free chlorine produced a much higher level of total organic chlorine (TOCl) and bromine (TOBr) than chloramines and chlorine dioxide in the presence of bromide.  相似文献   

14.
Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.  相似文献   

15.
Zhang W  DiGiano FA 《Water research》2002,36(6):1469-1482
Bacterial regrowth was investigated over a 15-month period in distribution systems (DSs) of Durham and Raleigh in North Carolina. These two water utilities were chosen because they are adjacent to one another, have similar service area characteristics, and treat surface waters of similar characteristics with conventional processes (coagulation-sedimentation and dual-media filtration). The finished waters have similar chemical quality and regrowth potential as measured by assimilable organic carbon (AOC). The major difference in treatment is the choice of final disinfectants (chlorine in Durham and chloramine in Raleigh). Ten sampling sites (monthly sampling) were chosen in each system to give wide geographic coverage and correspondingly, a wide range of water residence times. Significant losses were observed in both chlorine and chloramine residual in the DSs that produced bacterial regrowth as measured by heterotrophic plate count (HPC). The frequency distributions for log HPC (133 observations from Durham and 135 observations from Raleigh) were statistically the same in the chlorinated and chloraminated DSs. A correlation analysis indicated that disinfectant residual is the most important factor determining HPC level. However, the resulting R2 value for a non-linear regression model that also included AOC, temperature, and pH as independent variables was less than 0.7. Bacterial regrowth as measured by HPC, is dependent upon a complex interaction of chemical, physical, and operational parameters that may not be captured by such a simple statistical relationship.  相似文献   

16.
Blooms of cyanobacteria can give rise to the production of toxins which contaminate drinking water sources. Among the oxidants and disinfectants typically applied in waterworks, chlorine has been found to be effective for the degradation of microcystins. In the present study, unknown second-order rate constants for the reactions of microcystin-LR (MC-LR), -RR and -YR with chlorine were determined over a wide pH range. It was found that an increase of pH has a negative effect on the microcystin degradation rate. Apparent second-order rate constant for the chlorination of MC-LR at 20 degrees C varied from 475 M(-1)s(-1) at pH 4.8 to 9.8 M(-1)s(-1) at pH 8.8. From these apparent second-order rate constants, rate constants for the reactions of MC-LR with hypochlorous acid (HOCl) and hypochlorite (ClO-) were evaluated. Half-life times ranged from minutes at pH 6 to 1 h at pH 8 for a constant residual chlorine concentration of 1.0-0.5 mgl(-1), typical of oxidation pre-treatment and final disinfection. Similar reactivity with chlorine was found for MC-RR and MC-YR. Therefore, chlorination is a feasible option for microcystin degradation during oxidation and disinfection processes, and can be applied in drinking water treatment in case of cyanobacterial toxin risk if the pH is kept below 8.  相似文献   

17.
Howard K  Inglis TJ 《Water research》2003,37(18):4425-4432
Chlorine is widely used in public water supplies to provide a disinfection barrier. The effect of chlorine disinfection on the water-borne pathogen Burkholderia pseudomallei was assessed using multiple techniques. After exposure to chlorine viable bacteria were undetectable by conventional plate count techniques; however, persistence of B. pseudomallei was verified by flow cytometry and bacteria were recoverable following a simple one-step broth procedure. The minimum residual chlorine concentration and contact time as prescribed by potable water providers in Australia was insufficient to reduce a B. pseudomallei population by more than 2 log(10). Chlorine had a bacteriostatic effect only on B. pseudomallei; viable bacteria were recovered from water containing up to 1000 ppm free chlorine. This finding has practical implications for water treatment in regions where B. pseudomallei is endemic. Future work to assess the effect of alternative water disinfection processes either singly or in sequence is necessary.  相似文献   

18.
The aim of this study was to evaluate the formation of toxic and genotoxic compounds in surface drinking waters treated with two widely used disinfectants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO(2)), and a new disinfectant, peracetic acid (PAA). For this purpose a pilot plant was set up to add these biocides continuously to pre-filtered lake water flowing into three different basins. During three seasonal experiments, short-term in vivo tests (with plant, fish and molluscs) and in vitro tests (with bacteria, yeast and human cells) were carried out to evaluate the formation of genotoxic disinfection by-products (DBPs). Gas chromatography/mass spectrometry (GC/MS) was used to identify DBPs produced during the different treatments, microbiological analyses were performed to test the biocidal activity of the disinfectants, and chemical analyses were carried out to evaluate the quality of the water. The pilot drinking water plant under study was useful in studying the toxicity and genotoxicity of disinfected drinking water with this combined chemical/biotoxicological approach. This paper describes the setting up of the pilot plant and sets out/reports the results of the microbiological and chemical analyses.  相似文献   

19.
Weng S  Li J  Blatchley ER 《Water research》2012,46(8):2674-2682
Ultraviolet (UV) irradiation is commonly applied as a secondary disinfection process in chlorinated pools. UV-based systems have been reported to yield improvements in swimming pool water and air chemistry, but to date these observations have been largely anecdotal. The objectives of this investigation were to evaluate the effects of UV irradiation on chlorination of important organic-N precursors in swimming pools.Creatinine, L-arginine, L-histidine, glycine, and urea, which comprise the majority of the organic-N in human sweat and urine, were selected as precursors for use in conducting batch experiments to examine the time-course behavior of several DBPs and residual chlorine, with and without UV254 irradiation. In addition, water samples from two natatoria were subjected to monochromatic UV irradiation at wavelengths of 222 nm and 254 nm to evaluate changes of liquid-phase chemistry. UV254 irradiation promoted formation and/or decay of several chlorinated N-DBPs and also increased the rate of free chlorine consumption. UV exposure resulted in loss of inorganic chloramines (e.g., NCl3) from solution. Dichloromethylamine (CH3NCl2) formation from creatinine was promoted by UV exposure, when free chlorine was present in solution; however, when free chlorine was depleted, CH3NCl2 photodecay was observed. Dichoroacetonitrile (CNCHCl2) formation (from L-histidine and L-arginine) was promoted by UV254 irradiation, as long as free chlorine was present in solution. Likewise, UV exposure was observed to amplify cyanogen chloride (CNCl) formation from chlorination of L-histidine, L-arginine, and glycine, up to the point of free chlorine depletion. The results from experiments involving UV irradiation of chlorinated swimming pool water were qualitatively consistent with the results of model experiments involving UV/chlorination of precursors in terms of the behavior of residual chlorine and DBPs measured in this study.The results indicate that UV254 irradiation promotes several reactions that are involved in the formation and/or destruction of chlorinated N-DBPs in pool settings. Enhancement of DBP formation was consistent with a mechanism whereby a rate-limiting step in DBP formation was promoted by UV exposure. Promotion of these reactions also resulted in increases of free chlorine consumption rates.  相似文献   

20.
The impact of disinfection efficacy in natural waters was evaluated by performing disinfection assays using four untreated surface waters of various qualities and ultra-pure buffered waters as a baseline condition for comparison. Bacillus subtilis spores were spiked in these waters and disinfection assays were conducted at 22 degrees C using either free chlorine or chlorine dioxide. Assays using indigenous aerobic spores were also completed. The inactivation kinetics in natural and ultra-pure buffered waters were not statistically different (at p = 0.05) while using free chlorine, as long as disinfectant decay was taken into account. Filtering natural waters through a 0.45 microm did not improve the sporicidal efficacy of chlorine. For three out of the four waters tested, the efficacy of chlorine dioxide was greater in natural waters compared to that observed in ultra-pure buffered waters. Such results are consistent with previous observations using ultra-pure waters supplemented with NOM-extract from the Suwannee River. Similar to free chlorine results, the impact of filtration (0.45 microm) on the efficacy of chlorine dioxide was not statistically significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号