首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
目的分析机械通风情况下,高压细水雾技术对单室油火的灭火效果,为高压细水雾灭火系统在地下大空间的应用奠定基础.方法采用火灾动力学模拟软件(FDS),应用大涡模拟方法的场模型、两相流模型、辐射模型,模拟分析火源中心面的温度、灭火时间、CO质量浓度等参数.结果得到在1 MW、1.5 MW、2.5 MW火灾功率下,不同通风情况的10 MPa高压细水雾喷头的灭火特性参数,对比、分析了火源上方0.5 m处的温度以及1.5 m截面的CO平均质量浓度的变化曲线.结论随着火灾功率的增加,机械排烟对10 MPa高压细水雾灭火效果的负面效应减小,机械排烟和高压细水雾灭火技术联合作用对2.5 MW火灾的灭火效果更佳.  相似文献   

2.
目的 研究不同油盆空间位置条件下,细水雾不同喷射角度对公路隧道油火的灭火效果,为受限狭长空间内细水雾灭火设计提供依据.方法 采用FDS软件,建立公路隧道内细水雾灭油火模型,对比分析了燃料表面平均温度、油盆正上方4 m处温度变化曲线,烟气层高度,隧道内1.5 m高度CO体积分数.结果 当火源处于细水雾喷头正下方时灭火最为有效,细水雾喷头喷射角度增加为30°~90°时灭火效果改善.结论 当隧道内火源处于不同位置时,细水雾灭火效果不同,随着细水雾喷头与火源水平距离不断增大灭火效果越差.通过改变细水雾喷头喷射角度,扩大细水雾喷头保护范围,有利于扑灭火源距离细水雾喷头较远的火灾.  相似文献   

3.
排烟量和排烟口布置是隧道重点排烟中影响烟气控制效果的关键因素.采用数值模拟的方法研究不同火源功率及不同隧道宽度时火灾烟气的生成量,并依据烟气生成量研究不同排烟量、不同排烟口布置对隧道内烟气蔓延长度和排热效率的影响.研究结果表明,烟气的生成量与火源功率、隧道宽度以及烟气的蔓延长度密切相关.当前规范中推荐的排烟量难以达到《公路隧道通风设计细则》中建议的300 m的烟气控制目标.若以烟气的控制范围为排烟系统的设计目标,烟气的控制范围和排烟口的开启范围之间存在线性关系,设计中可依此优化排烟口的布置.  相似文献   

4.
为了探究隧道发生火灾后,其内部通风排烟系统的开启是否会对自动喷水系统的灭火效果产生影响,本文通过全尺寸试验的方法,针对20 MW的木垛火和油池火,对隧道内以临界风速送风时的火灾场景进行了研究,同时研究了火源上方存在遮挡以及通风和灭火开启时序的影响。研究结果表明:通风可以降低隧道内的顶棚温度,提高隧道内的能见度,在一定程度上可以提高自动灭火系统的灭火效率。当固态火源上方存在遮挡时,通风系统后启动会局部加大火势,使灭火时间增长。对于运输碳氢类固态货物的车辆火灾,通风系统先于灭火系统开启或通风和灭火系统同时开启的灭火效果较好。  相似文献   

5.
通过数值模拟手段对纵向通风时隧道内的烟气扩散特性进行研究,探讨较低风速时,针对不同火源功率、不同风速作用下,火源上、下游烟气的分层特性及温度分布特性,并在此基础上探讨纵向排烟在拥堵的交通隧道中应用的可能性.研究结果表明:如果起火初期隧道内以较低的纵向风速送风,保证上、下游烟气分层的存在,则纵向通风可用于交通拥堵的隧道.火源功率为5 MW时,该风速约为1.0 m/s;火源功率为20 MW时,较适宜的风速为1.0~1.5 m/s;火源功率为30 MW时,较适宜的风速为1.5 m/s左右.火源功率较大时,应尽早将火源下游附近的人员疏散,以确保安全.  相似文献   

6.
通过1/20小尺寸模型实验对城市隧道火灾组合通风排烟方式下的排烟特性进行了研究.通过对不同纵向风速和不同排烟量下温度和烟气实验结果的分析,表明隧道的顶部排烟量越大,烟气层下降越慢,越有利于隧道内的人员疏散,但是排烟量的增大对降低隧道顶部温度效果不大.根据实验结果可知,对于组合通风方式下的隧道火灾,应先打开顶部排烟口进行排烟,然后开启火源上游风机进行纵向通风,纵向通风风速应控制在临界风速左右.  相似文献   

7.
目的分析地铁列车前部发生火灾功率为7.5 MW的火灾情况下,屏蔽门开启数量的不同对火灾烟气扩散的影响.方法运用FLUENT软件对列车前部起火的隧道火灾进行了模拟,选择了屏蔽门全部开启和关闭靠近火源一侧的8个屏蔽门两种情况进行了数值模拟,并对模拟结果进行了比较分析.结果关闭靠近火源一侧的部分屏蔽门,可以使烟气得到更好地控制,扩散到站台的烟气量较少,更利于人员的疏散.结论在发生隧道火灾时,合理地选择屏蔽门开启数量可以为地铁站台内人员的疏散创造有利的条件.  相似文献   

8.
集中排烟隧道兼顾纵向通风和集中排烟等诸多优点,在长大隧道设计中应用广泛,如何掌握烟气在隧道内的衰减规律便于有效排烟是研究人员关注的重点。文章结合集中排烟隧道系统设计,针对50 MW大强度火灾,考虑两种火源位置,模拟预测不同送风风速v1、诱导风速v2组合工况下排风口位置烟气温度、浓度衰减规律。结果表明:火源上游排风口(1#)处烟气水平衰减系数随v1增大而减小,垂直衰减系数规律则相反,火源下游排风口(2#、3#)处烟气垂直衰减系数随v2增大而增大,水平衰减系数规律相反;各风口处烟气温度水平衰减系数大于浓度水平衰减系数,而垂直衰减系数小于浓度衰减系数,均与火源位置无关。  相似文献   

9.
为了提高普通细水雾灭火的有效性,采用小尺度实验方法,通过在普通细水雾中加入添加剂,研究了在受限空间内含添加剂细水雾扑灭油池火的有效性.实验研究发现:当火源位于细水雾的作用范围内时,灭火时间较短,灭火性能较高;当火源位于细水雾的防护区域外时,灭火有效性显著降低.而在相同流量和压力下向细水雾中加入添加剂,能显著地影响它的灭火性能,使火焰容易熄灭,灭火时间大大缩短,从而提高了细水雾的灭火能力,因此细水雾对受限空间内油池火的灭火有效性大大增强.通过细水雾对O2、CO、CO2的体积分数以及对火焰温度、烟气温度影响分析,为筛选和制备细水雾灭火添加剂提供了实验数据.  相似文献   

10.
特长隧道火灾中沥青路面温度场的数值模拟   总被引:1,自引:0,他引:1  
采用考虑了湍流效应和辐射传热的扩散燃烧模型,对长隧道在不同规模火源和通风条件下的火灾过程进行了数值模拟.其中,湍流计算采用带有浮力修正的κ ε模型,热辐射采用P-1模型.计算结果与试验数据吻合良好.对隧道火灾过程中路面温度的分布,以及火灾规模、通风条件对其的影响进行了分析.结果表明,低于10 MW规模的隧道火灾基本上不会引起沥青路面燃烧;对20、50 MW规模的隧道火灾,只要分别保持2、4 m/s的通风,也基本上能确保沥青路面不被引燃.加大通风虽能延缓路面温度的升高,但由于扩大了路面升温的范围,当火灾进行到一定时间后,可能引起更大范围内沥青路面的燃烧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号