首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Isolated peroxisomes were able to utilize [3H]isopentenyl diphosphate to synthesize farnesyl diphosphate, which then was utilized as substrate by both the peroxisomal squalene synthetase and cis-prenyltransferase. The specific activity of squalene synthetase in peroxisomes was as high as in microsomes, i.e. 160 pmol/mg of protein/min. If NADPH was omitted from the assay medium, presqualene diphosphate accumulated, which indicates that the reaction occurs in two steps, as in microsomes. In the presence of NADPH, incorporation from [3H]farnesyl diphosphate was stimulated 3-fold, and the major products were squalene and cholesterol. The specific activity of cis-prenyl-transferase in peroxisomes was 4-fold higher than in microsomes, i.e. 456 pmol of isopentenyl diphosphate incorporated/mg of protein/h. There were two major products formed from farnesyl diphosphate and [3H] isopentenyl diphosphate, i.e. trans,trans,cis-geranylgeranyl diphosphate and long chain polyprenyl diphosphates. The polyprenyl diphosphates had the same chain length distribution as that of dolichol derivatives in rat liver, with the dominating polyisoprenes being C90 and C95. In contrast to the microsomal enzyme, peroxisomal cis-prenyltransferase did not require detergents for optimal activity. The enzyme was associated primarily with the peroxisomal membrane after sonication of the peroxisomes.  相似文献   

2.
3.
Polyisoprenoid alcohols occurring in spinach leaves were analyzed by a two-plate TLC method. Z,E-mixed polyprenols (C(55-60)), glycinoprenols (C(50-55)), and solanesol (C(45)) were mainly found in chloroplasts, whereas dolichols (C(70-80)) were mainly found in microsomes. Analysis of enzymatic products derived from [1-(14)C]isopentenyl diphosphate and farnesyl diphosphate (FPP) with subcellular fractions revealed that chloroplasts and microsomes had the ability to synthesize Z,E-mixed polyprenyl (C(50-65)) and all E-polyprenyl (C(45-50)) diphosphates, and Z,E-mixed polyprenyl (C(70-85)) diphosphates, respectively. FPP and geranylgeranyl diphosphate (GGPP) were both accepted for these enzymatic reactions, the former being a better substrate than the latter. NMR analysis of naturally occurring spinach Z,E-mixed polyprenol (C(55)) and dolichol (C(75)) revealed that the number of internal trans isoprene residues in the former was three in comparison with two internal trans residues found for the latter. These results indicate that two kinds of polyprenyl diphosphate synthases occur in spinach: One is the chloroplast enzyme involved in the synthesis of the shorter-chain (C(50-65)) Z,E-mixed polyprenols and the other is the microsomal enzyme involved in the synthesis of longer-chain (C(70-85)) Z,E-mixed polyprenols, which is converted to dolichols.  相似文献   

4.
Several detergents activated microsomal dehydrodolichyl diphosphate synthase of rat liver, but the chain length of products shifted downward from C90 and C95 with increasing concentration of the detergents. Maximum activation was observed at the concentration of 2% Triton X-100, 30 mM octyl glucoside, 30 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 10 mM deoxycholate with the product chain length being C80-C85, C65-C75, C70-C75, and C55-C65, respectively. The activity of Triton X-100 solubilized enzyme was decreased by asolectin, phosphatidylethanolamine, and phosphatidylcholine. The chain lengths of products formed in the presence of these phospholipids were C85 and C90. In the presence of both phosphatidylcholine and Mg2+ the solubilized enzyme was able to produce C90 and C95 dehydrodolichyl diphosphates like native microsomal enzyme. Microsomal enzyme preparations from rat liver, brain, and testis catalyzed the formation of dehydrodolichyl diphosphates with the same chain lengths as those of the natural dolichols occurring in individual tissues. The chain length distribution of dehydrodolichyl products by (rat liver) microsomes also depended on the concentration of substrates. Not only did increasing the concentration of isopentenyl diphosphate lead to longer chain product, but decreasing that of farnesyl diphosphate increased product chain length.  相似文献   

5.
The levels of dolichyl phosphate and 2,3-dehydrodolichyl diphosphate synthase were determined in seminiferous tubules of prepuberal rats to assess any changes occurring during early stages of spermatogenesis. Dolichyl phosphate increased in concentration two- to threefold from Day 10 to Day 23 after birth. A method was optimized to measure dehydrodolichyl diphosphate synthesis from delta 3-[14C]isopentenyl diphosphate and t,t-farnesyl diphosphate in homogenates of seminiferous tubules. Both dehydrodolichyl mono- and diphosphates were observed as products of the in vitro assay. The specific activity of tubular synthase increased twofold between Day 7 and Day 23 and decreased similarly between Day 23 and Day 60. Since there was a parallel increase in the concentration of tubular dolichyl phosphate and dehydrodolichyl diphosphate synthase activity during early stages of spermatogenesis, it is proposed that the level of dolichyl phosphate may be controlled at least in part by the regulation of de novo dehydrodolichyl diphosphate biosynthesis. The synthase was also solubilized from tubular membranes with deoxycholate and partially purified by chromatography.  相似文献   

6.
A double-isotope dilution procedure is described for the determination of two isoprenoid precursors, isopentenyl and farnesyl diphosphate. Recovery of each is determined by the addition of the appropriate radioactive diphosphate to the tissue sample. After partial purification, each is coupled by a prenyltransferase with a cosubstrate of known specific activity. The products, doubly labeled farnesyl and geranylgeranyl diphosphates, are cleaved to the parent alcohols by alkaline phosphatase. The resulting polyprenols are isolated by reversed-phase thin-layer chromatography and their radioisotopic content is determined. The levels of these precursors have been measured in livers of rats and mice that have been maintained on several different diets. The concentration of each was about 0.5 mumol/g wet tissue and varied as much as 10-fold under the different test conditions. The levels of isopentenyl diphosphate isomerase, farnesyl diphosphate synthetase, and squalene synthetase were also measured in these animals. The changes in levels of these enzymes, in conjunction with the variation in substrate concentrations, are such that they could substantially influence the rate of cholesterol synthesis in liver.  相似文献   

7.
Z-prenyl diphosphate synthases catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphates to synthesize polyprenyl diphosphates. In mycobacteria, these are precursors of decaprenyl phosphate, a molecule which plays a central role in the biosynthesis of essential mycobacterial cell wall components, such as the mycolyl-arabinogalactan-peptidoglycan complex and lipoarabinomannan. Recently, it was demonstrated that open reading frame Rv2361c of the Mycobacterium tuberculosis H37Rv genome encodes a unique prenyl diphosphate synthase (M. C. Schulbach, P. J. Brennan, and D. C. Crick, J. Biol. Chem. 275:22876-22881, 2000). We have now purified the enzyme to near homogeneity by using an Escherichia coli expression system and have shown that the product of this enzyme is decaprenyl diphosphate. Rv2361c has an absolute requirement for divalent cations and an optimal pH range of 7.5 to 8.5, and the activity is stimulated by both detergent and dithiothreitol. The enzyme catalyzes the addition of isopentenyl diphosphate to geranyl diphosphate, neryl diphosphate, omega,E,E-farnesyl diphosphate, omega,E,Z-farnesyl diphosphate, or omega,E,E,E-geranylgeranyl diphosphate, with Km values for the allylic substrates of 490, 29, 84, 290, and 40 microM, respectively. The Km value for isopentenyl diphosphate is 89 microM. The catalytic efficiency is greatest when omega,E,Z-farnesyl diphosphate is used as the allylic acceptor, suggesting that this is the natural substrate in vivo, a conclusion that is supported by previous structural studies of decaprenyl phosphoryl mannose isolated from M. tuberculosis. This is the first report of a bacterial Z-prenyl diphosphate synthase that preferentially utilizes an allylic diphosphate primer having the alpha-isoprene unit in the Z configuration, indicating that Rv1086 (omega,E,Z-farnesyl diphosphate synthase) and Rv2361c act sequentially in the biosynthetic pathway that leads to the formation of decaprenyl phosphate in M. tuberculosis.  相似文献   

8.
9.
Long chain cis-prenyltransferase in rat liver microsomes was studied using various allylic isoprenoid substrates. Microsomes could utilize trans-geranyl pyrophosphate, but not cis-geranyl pyrophosphate for polyprenyl pyrophosphate synthesis. Both trans, trans-farnesyl pyrophosphate and trans,cis-farnesyl pyrophosphate were used as substrates with Km values of 24 and 5 microM, respectively. trans,trans,cis-Geranylgeranyl pyrophosphate could be used as substrate with an apparent Km of 36 microM. trans,trans,trans-Geranylgeranyl pyrophosphate was also utilized as substrate, but with a very low affinity. After pulse labeling for 4 min, using [3H]isopentenyl pyrophosphate and trans,trans-farnesyl pyrophosphate, the only product formed was trans,trans,cis-geranylgeranyl pyrophosphate, which, upon chasing, yielded polyprenyl pyrophosphate. Independent of the nature of the substrate used, even in the case of polyprenyl 12-pyrophosphate and all-trans-nonaprenyl pyrophosphate, the chain lengths of the products were identical, i.e. polyprenyl pyrophosphates with 15-18 isoprene residues. Microsomes were able to synthesize trans,trans-farnesyl pyrophosphate using trans-geranyl pyrophosphate as substrate. The results indicate that rat liver microsomes contain a farnesyl pyrophosphate synthase activity and that the reaction catalyzed by cis-prenyltransferase may consist of two individual steps, i.e. synthesis of trans,trans,cis-geranylgeranyl pyrophosphate and elongation of this product to long chain polyprenyl pyrophosphates.  相似文献   

10.
Isoprenyl diphosphate synthases catalyze consecutive condensations of isopentenyl diphosphates with allylic primer substrates to form linear backbones for all isoprenoid compounds including cholesterol. These synthases are classified according to the final chain length of their end products and the stereochemistry of the newly formed double bonds. Mutagenesis and X-ray crystallography data have uncovered the basic catalytic and chain length determination mechanisms of E-isoprenyl diphosphate synthases and shed light on their possible evolutionary course. Although much less is known about the Z-isoprenyl diphosphate synthase family, successful cloning and subsequent crystallizations in the near future will no doubt bring more insight as researchers begin to unravel the essential components and precise reaction mechanisms of this cellular machinery.  相似文献   

11.
Isoprenyl diphosphate synthases catalyze addition of allylic diphosphate primers to the isoprene unit in isopentenyl diphosphate to produce polyisoprenoid diphosphates with well defined chain lengths. Phylogenetic correlations suggest that the synthases which catalyze formation of isoprenoid diphosphates with (E) double bonds have evolved from a common ancestor. X-ray crystallographic studies of farnesyl diphosphate synthase in conjunction with site-directed mutagenesis have provided important new information about the residues involved in binding and catalysis and the source of chain length selectivity for the enzymes that catalyze chain elongation.  相似文献   

12.
Prenyltransferases (prenyl diphosphate synthases), which are a broad group of enzymes that catalyze the consecutive condensation of homoallylic diphosphate of isopentenyl diphosphates (IPP, C5) with allylic diphosphates to synthesize prenyl diphosphates of various chain lengths, have highly conserved regions in their amino acid sequences. Based on the above information, three prenyltransferase homologue genes were cloned from a thermophilic cyanobacterium, Synechococcus elongatus. Through analyses of the reaction products of the enzymes encoded by these genes, it was revealed that one encodes a thermolabile geranylgeranyl (C20) diphosphate synthase, another encodes a farnesyl (C15) diphosphate synthase whose optimal reaction temperature is 60 °C, and the third one encodes a prenyltransferase whose optimal reaction temperature is 75 °C. The last enzyme could catalyze the synthesis of five prenyl diphosphates of farnesyl, geranylgeranyl, geranylfarnesyl (C25), hexaprenyl (C30), and heptaprenyl (C35) diphosphates from dimethylallyl (C5) diphosphate, geranyl (C20) diphosphate, or farnesyl diphosphate as the allylic substrates. The product specificity of this novel kind of enzyme varied according to the ratio of the allylic and homoallylic substrates. The situations of these three S. elongatus enzymes in a phylogenetic tree of prenyltransferases are discussed in comparison with a mesophilic cyanobacterium of Synechocystis PCC6803, whose complete genome has been reported by Kaneko et al. (1996).  相似文献   

13.
Geranylgeranyl diphosphate (GGPP) synthase catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to give (all-E)-GGPP. GGPP is one of the key precursors in the biosynthesis of biologically significant isoprenoid compounds. In order to examine possible participation of the GGPP synthase in the enzymatic prenyl chain elongation in natural rubber biosynthesis, we cloned, overexpressed and characterized the cDNA clone encoding GGPP synthase from cDNA libraries of leaf and latex of Hevea brasiliensis. The amino acid sequence of the clone contains all conserved regions of trans-prenyl chain elongating enzymes. This cDNA was expressed in Escherichia coli cells as Trx-His-tagged fusion protein, which showed a distinct GGPP synthase activity. The apparent K(m) values for isopentenyl-, farnesyl-, geranyl- and dimethylallyl diphosphates of the GGPP synthase purified with Ni(2+)-affinity column were 24.1, 6.8, 2.3, and 11.5 microM, respectively. The enzyme shows optimum activity at approximately 40 degrees C and pH 8.5. The mRNA expression of the GGPP synthase was detected in all tissues examined, showing higher in flower and leaf than petiole and latex, where a large quantity of natural rubber is produced. On the other hand, expression levels of the Hevea farnesyl diphosphate synthase were significant in latex as well as in flower.  相似文献   

14.
In the synthesis of isoprenoids, isoprenyl diphosphate synthases catalyze the consecutive condensation of isopentenyl diphosphate with allylic diphosphates to produce a variety of prenyl diphosphates with well-defined chain lengths. Site-directed mutagenesis in conjunction with X-ray crystallographic studies have identified specific amino acid residues responsible for chain-length determination. Simple combinations of these residues within a characteristic motif are not only sufficient to confer product specificities to all isoprenyl diphosphate synthases but represent structural features that reflect the enzyme family's evolutionary course.  相似文献   

15.
Cell-free homogenates prepared from broad-bean seeds and yeast cells are capable of synthesizing 4-carboxy-2-polyprenylphenols from p-hydroxybenzoate and either isopentenyl pyrophosphate or protein-bound polyprenyl pyrophosphates (produced by incubating a Micrococcus lysodeikticus extract with isopentenyl pyrophosphate). The mitochondria contained all the polyprenyl pyrophosphate-p-hydroxybenzoate polyprenyltransferase activity; however, unlike the homogenates they could not synthesize a side chain from isopentenyl pyrophosphate and had to be provided with protein-bound polyprenyl pyrophosphates.  相似文献   

16.
Two types of experiments were carried out; either maize roots were incubated in L-[1-3H]fucose or membranes were prepared from root tips and these were incubated with GDP-L-[U-14C]fucose or UDP-D-[U-4C]glucose. The radioactively labelled lipids that were synthesized in vivo and in vitro were extracted and separated into polar and neutral components. The polar lipids had the characteristics of polyprenyl phosphate and diphosphate fucose or glucose derivatives, and the neutral lipids of sterol glycosides (fucose or glucose). A partial separation of the glycolipid synthetase reactions was achieved. Membranes were fractionated into material that sedimented at 20,000g and 100,000g. Most of the polar glycolipid synthetase activity (for the incorporation of both fucose and glucose) was located in the 100,000 g pellet, and this activity was probably located in the endoplasmic reticulum. The neutral lipid, which contained fucose, was synthesized mainly by membranes of the 20,000g pellet, and the activity was probably associated with the dictyosomes, whereas the neutral glucolipids were synthesized by all the membrane fractions. It is suggested that the polar (polyprenyl) lipids labelled with fucose could act as possible intermediates during the synthesis of the glycoproteins and slime in the root tip.  相似文献   

17.
The primary structure of cis-prenyltransferase is totally different from those of trans-prenyltransferases (Shimizu, N., Koyama, T., and Ogura, K. (1998) J. Biol. Chem. 272, 19476-19481). To better understand the molecular mechanism of enzymatic cis-prenyl chain elongation, we selected seven charged residues in the conserved Region V and two of Phe-Ser motif in Region III of undecaprenyl diphosphate synthase of Micrococcus luteus B-P 26 for substitutions by site-directed mutagenesis and examined their effects on substrate binding and catalysis. Kinetic studies indicated that replacements of Arg-197 or Arg-203 with Ser, and Glu-216 with Gln resulted in 7-11-fold increases of Km values for isopentenyl diphosphate and 18-1200-fold decreases of kcat values compared with those of the wild-type enzyme. In addition, two mutants with respect to the Phe-Ser motif in Region III, F73A and S74A, showed 16-32-fold larger Km values for isopentenyl diphosphate and 12-16-fold lower kcat values than those of the wild-type. Furthermore, product analysis indicated that three mutants, F73A, S74A, and E216Q, yielded shorter chain prenyl diphosphates as their main products. These facts together with the protein structural analysis recently carried out (Fujihashi, M., Zhang, Y.-W., Higuchi, Y., Li, X.-Y., Koyama, T., and Miki, K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4337-4342) indicated that the diphosphate moiety of homoallylic substrate is electrostatically recognized by the three charged amino acids, Arg-197, Arg-203, and Glu-216, in Region V and the Phe-Ser motif in Region III, also indispensable for homoallylic substrate binding as well as catalytic function. It was suggested that the undecaprenyl diphosphate synthase takes a different mode for the binding of isopentenyl diphosphate from that of trans-prenyl chain elongating enzymes.  相似文献   

18.
In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo  相似文献   

19.
The trans-polyisoprene compounds are synthesized by trans-isoprenyl diphosphate synthase (IDS) with consecutive condensation of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP). The in vitro condensation by IDS does not proceed efficiently by hydrophobic interaction between IDS and the hydrocarbon of longer products. In the present study, the enzymatic synthesis of trans-polyisoprenyl diphosphates was attempted in an organic-aqueous dual-liquid phase system with thermostable enzymes obtained from Thermococcus kodakaraensis. The conversion from DMAPP to a longer-chain product was achieved in a dual-liquid phase system, and more than 80% of the products were recovered in the organic phase. When the mutant IDS-Y81S, in which Tyr81 is replaced with Ser, was used in the dual-phase system, productivity was enhanced about four times and the ratio of the longer-chain products was increased. Co-incubation of IPP isomerase from T. kodakaraensis with IDS or IDS-Y81S enabled the direct synthesis of polyisoprenyl diphosphates from IPPs.  相似文献   

20.
Nucleotide analogue inhibitors of purine nucleoside phosphorylase   总被引:2,自引:0,他引:2  
The diphosphate of the antiherpetic agent acyclovir [9-[(2-hydroxyethoxy)methyl]guanine] has been shown to inhibit purine nucleoside phosphorylase with unique potency (Tuttle, J. V., and Krenitsky, T. A. (1984) J. Biol. Chem. 259, 4065-4069). A major factor contributing to the superior inhibition by this diphosphate over the corresponding mono- and triphosphates is revealed here. Homologues of acyclovir mono- and diphosphate that extend the ethoxy moiety by one to four methylene groups were synthesized. These homologues were evaluated for their ability to inhibit human purine nucleoside phosphorylase. Within the diphosphate series, the Ki values increased progressively with increasing chain length. With the monophosphates, the Ki values reached a minimum with the homologue containing a pentoxy moiety. A plot of chain length versus Ki values for both mono- and diphosphates showed that both series had similar optimal distances between the aminal carbon and the terminal oxygen anion. Monophosphates with optimal positioning were somewhat less potent than diphosphates with similar positioning. Nevertheless, it was clear that a major factor in determining potency of inhibition was the distance of the terminal phosphate from the guanine moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号