首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near‐field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle‐based cluster assemblies have exhibited signal enhancements in surface‐enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low‐cost fabrication methods. Here an innovative method is developed for fabricating self‐organized clusters of metal nanoparticles on diblock copolymer thin films as SERS‐active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self‐organized chemically functionalized poly(methyl methacrylate) domains on polystyrene‐block‐poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub‐10‐nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point‐to‐point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full‐wave electromagnetic simulations. Reusability for small‐molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non‐lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.  相似文献   

2.
The cost‐effective self‐assembly of 80 nm Au nanoparticles (NPs) into large‐domain, hexagonally close‐packed arrays for high‐sensitivity and high‐fidelity surface‐enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite‐difference time‐domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum‐gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3–5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of ≈104 is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of ≈108 is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.  相似文献   

3.
Surface‐enhanced Raman scattering (SERS) is one of the most promising methods to detect small molecules for point‐of‐care analysis as it is rapid, nondestructive, label‐free, and applicable for aqueous samples. Here, microgels containing highly concentrated yet evenly dispersed gold nanoparticles are designed to provide SERS substrates that simultaneously achieve contamination‐free metal surfaces and high signal enhancement and reproducibility. With capillary microfluidic devices, water‐in‐oil‐in‐water (W/O/W) double‐emulsion drops are prepared to contain gold nanoparticles and hydrogel precursors in innermost drop. Under hypertonic condition, water is selectively pumped out from the innermost drops. Therefore, gold nanoparticles are gently concentrated without forming aggregates, which are then captured by hydrogel matrix. The resulting microgels have a concentration of gold nanoparticles ≈30 times higher and show Raman intensity two orders of magnitude higher than those with no enrichment. In addition, even distribution of gold nanoparticles results in uniform Raman intensity, providing high signal reproducibility. Moreover, as the matrix of the microgel serves as a molecular filter, large adhesive proteins are rejected, which enables the direct detection of small molecules dissolved in the protein solution. It is believed that this advanced SERS platform is useful for in situ detection of toxic molecules in complex mixtures such as biological fluids, foods, and cosmetics.  相似文献   

4.
Plexitonic nanoparticles offer variable optical properties through tunable excitations, in addition to electric field enhancements that far exceed molecular resonators. This study demonstrates a way to design an ultrabright surface‐enhanced Raman spectroscopy (SERS) signal while simultaneously quenching the fluorescence background through silica encapsulation of the semiconductor–metal composite nanoparticles. Using a multistep approach, a J‐aggregate‐forming organic dye is assembled on the surface of gold nanoparticles using a cationic linker. Excitonic resonance of the J‐aggregate–metal system shows an enhanced SERS signal at an appropriate excitation wavelength. Further encapsulation of the decorated particles in silica shows a significant reduction in the fluorescence signal of the Raman spectra (5× reduction) and an increase in Raman scattering (7× enhancement) when compared to phospholipid encapsulation. This reduction in fluorescence is important for maximizing the useful SERS enhancement from the particle, which shows a signal increase on the order of 104 times greater than J‐aggregated dye in solution and 24 times greater than Oxonica S421 SERS tag. The silica layer also serves to promote colloidal stability. The combination of reduced fluorescence background, enhanced SERS intensity, and temporal stability makes these particles highly distinguishable with potential to enable high‐throughput applications such as SERS flow cytometry.  相似文献   

5.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

6.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

7.
Raman microspectroscopy provides chemo‐selective image contrast, sub‐micrometer resolution, and multiplexing capabilities. However, it suffers from weak signals resulting in image‐acquisition times of up to several hours. Surface‐enhanced Raman scattering (SERS) can dramatically enhance signals of molecules in close vicinity of metallic surfaces and overcome this limitation. Multimodal, SERS‐active nanoparticles are usually labeled with Raman marker molecules, limiting SERS to the coating material. In order to realize multimodal imaging while acquiring the rich endogenous vibronic information of the specimen, a core–shell particle based on “Nanorice”, where a spindle‐shaped iron oxide core is encapsulated by a closed gold shell, is developed. An ultrathin layer of silica prevents agglomeration and unwanted chemical interaction with the specimen. This approach provides Raman signal enhancement due to plasmon resonance effects of the shell while the optical absorption in the near‐infrared spectral region provides contrast in photoacoustic tomography. Finally, T2‐relaxation of a magnetic resonance imaging (MRI) experiment is altered by taking advantage of the iron oxide core. The feasibility for Raman imaging is evaluated by nearfield simulations and experimental studies on the primate cell line COS1. MRI and photoacoustics are demonstrated in agarose phantoms illustrating the promising translational nature of this strategy for clinical applications in radiology.  相似文献   

8.
An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R(2) > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 10(8), which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 10(8) and 5.0 × 10(9).  相似文献   

9.
There is a need for intraoperative imaging technologies to guide breast‐conserving surgeries and to reduce the high rates of re‐excision for patients in which residual tumor is found at the surgical margins during postoperative pathology analyses. Feasibility studies have shown that utilizing topically applied surface‐enhanced Raman scattering (SERS) nanoparticles (NPs), in conjunction with the ratiometric imaging of targeted versus untargeted NPs, enables the rapid visualization of multiple cell‐surface biomarkers of cancer that are overexpressed at the surfaces of freshly excised breast tissues. In order to reliably and rapidly perform multiplexed Raman‐encoded molecular imaging of large numbers of biomarkers (with five or more NP flavors), an enhanced staining method has been developed in which tissue surfaces are cyclically dipped into an NP‐staining solution and subjected to high‐frequency mechanical vibration. This dipping and mechanical vibration (DMV) method promotes the convection of the SERS NPs at fresh tissue surfaces, which accelerates their binding to their respective biomarker targets. By utilizing a custom‐developed device for automated DMV staining, this study demonstrates the ability to simultaneously image four cell‐surface biomarkers of cancer at the surfaces of fresh human breast tissues with a mixture of five flavors of SERS NPs (four targeted and one untargeted control) topically applied for 5 min and imaged at a spatial resolution of 0.5 mm and a raster‐scanned imaging rate of >5 cm2 min?1.  相似文献   

10.
Surface-enhanced Raman scattering (SERS) of rhodamine 6G was investigated on template-embedded gold nanorods produced by anodic aluminum oxide template-assisted nanofabrication. A signal enhancement of about 106 was obtained. Two-dimensional arrays of gold nanospheres with different diameters and gap sizes were used as simplified model systems. SERS substrate design principles were investigated in order to achieve maximum electromagnetic enhancement of both the incident and Raman scattered fields.  相似文献   

11.
Magnetic‐plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface‐enhanced Raman scattering (SERS) activities are developed due to their potential in bio‐sensing applicable in non‐destructive and sensitive analysis with target‐specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed‐mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as‐prepared magnetic‐plasmonic nanoparticles. Importantly, one‐sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer‐by‐layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107. The SERS probes functionalized cyclic peptides are employed for targeted cancer‐cell imaging and separation.  相似文献   

12.
Highly dispersible Eu3+-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) exhibit optical properties, such as plasmon resonances in the near-infrared region at 790 nm and luminescence at 615 nm, offering multimodal capabilities: fluorescence imaging, surface-enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs were conjugated with a Raman reporter (4-mercaptobenzoic acid), showing a desired SERS signal (enhancement factor 5.0 × 105). The HNPs have a heat conversion efficiency of 25.6%, and a hyperthermia temperature of 42°C could be achieved by adjusting either concentration of HNPs, or laser power, or irradiation time. HNPs were modified with antibody specific to cancer biomarker epidermal growth factor receptor, then applied to human lung cancer (A549) and mouse hepatocyte cells (AML12), and in vitro PTT effect was studied. In addition, the biomechanical properties of A549 cells were quantified using atomic force microscopy. This study shows the potential applications of these HNPs in fluorescence imaging, SERS detection, and PTT with good photostability and biocompatibility.  相似文献   

13.
Plasmon resonance of gold nanoparticles is responsible of the electromagnetic (EM) Surface Enhanced Raman Scattering (SERS) effect. Interaction of an amorphous matrix with a SERS substrate was studied. Thin films with different thickness of amorphous TiO2 coated on a Klarite® substrate show a 100 times enhancement of the Raman signal. Distance dependence of the SERS interaction was shown to be less than 60 nm.  相似文献   

14.
A universal femtoliter surface droplet‐based platform for direct quantification of trace of hydrophobic compounds in aqueous solutions is presented. Formation and functionalization of femtoliter droplets, concentrating the analyte in the solution, are integrated into a simple fluidic chamber, taking advantage of the long‐term stability, large surface‐to‐volume ratio, and tunable chemical composition of these droplets. In situ quantification of the extracted analytes is achieved by surface‐enhanced Raman scattering (SERS) spectroscopy by nanoparticles on the functionalized droplets. Optimized extraction efficiency and SERS enhancement by tuning droplet composition enable quantitative determination of hydrophobic model compounds of rhodamine 6G, methylene blue, and malachite green with the detection limit of 10?9 to 10?11 m and a large linear range of SERS signal from 10?9 to 10?6 m of the analytes. The approach addresses the current challenges of reproducibility and the lifetime of the substrate in SERS measurements. This novel surface droplet platform combines liquid–liquid extraction and highly sensitive and reproducible SERS detection, providing a promising technique in current chemical analysis related to environment monitoring, biomedical diagnosis, and national security monitoring.  相似文献   

15.
Well defined gold nanostructures of various sizes are fabricated on glass substrates using high-resolution electron-beam lithography/lift-off techniques and detailed surface-enhanced Raman scattering (SERS) properties of crystal violet molecules are studied in order to elucidate electromagnetic (EM) field enhancement effects on the fabricated structures. SERS measurements are performed with high reproducibility using in situ Raman microspectroscopy in aqueous solution. An analysis based on EM theory is performed using field-enhancement factors obtained from finite-difference time-domain (FDTD) simulations and the analysis reproduces experimental results very well. It is noteworthy, furthermore, that the proposed analytic method of EM effects on SERS allows the estimate of the ideal local temperature of gold nanostructures by canceling out the difference in EM field factors at Stokes and anti-Stokes Raman scattering wavelengths. Thus, these experimental results demonstrate that quantitative analysis based on EM theory can be obtained using highly controlled gold nanostructures for SERS measurements with high reproducibility, a result that is promising for the construction of a SERS analysis chip. Although no SERS chip reported so far has been usable for quantitative analysis, this study opens the door for construction of a quantitative SERS chip.  相似文献   

16.
Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 × 107, which suggests strong potentials for direct applications in the chemical detection and analyses.  相似文献   

17.
A method is developed to synthesize surface‐enhanced Raman scattering (SERS) materials capable of single‐molecule detection, integrated with a microfluidic system. Using a focused laser, silver nanoparticle aggregates as SERS monitors are fabricated in a microfluidic channel through photochemical reduction. After washing out the monitor, the aggregates are irradiated again by the same laser. This key step leads to full reduction of the residual reactants, which generates numerous small silver nanoparticles on the former nanoaggregates. Consequently, the enhancement ability of the SERS monitor is greatly boosted due to the emergence of new “hot spots.” At the same time, the influence of the notorious “memory effect” in microfluidics is substantially suppressed due to the depletion of surface residues. Taking these advantages, two‐step photoreduced SERS materials are able to detect different types of molecules with the concentration down to 10?13m . Based on a well‐accepted bianalyte approach, it is proved that the detection limit reaches the single‐molecule level. From a practical point of view, the detection reproducibility at different probing concentrations is also investigated. It is found that the effective single‐molecule SERS measurements can be raised up to ≈50%. This microfluidic SERS with high reproducibility and ultrasensitivity will find promising applications in on‐chip single‐molecule spectroscopy.  相似文献   

18.
利用柠檬酸钠还原法制备了粒径均匀的AuNPs,并成功实现了其在APTMS修饰的玻璃表面的自组装,得到表面增强拉曼(SERS)基底。以R6G为探针分子检验了SERS基底的活性,其具有较强的增强性能。探讨了不同粒径AuNPs对SERS基底性能的影响,结果表明SERS基底的增强因子随着粒径的增大而增强。这种自组装策略为低浓度有机污染物的探测提供了一种有效的方法。  相似文献   

19.
Although the strength of Raman signals can be increased by many orders of magnitude on noble metal nanoparticles, this enhancement is confined to an extremely short distance from the Raman‐active surface. The key to the development of Raman spectroscopy for applications in diagnosis and detection of cancer and inflammatory diseases, and in pharmacology, relies on the capability of detecting analytes that are noninteractive with Raman‐active surfaces. Here, a new Raman enhancement system is constructed, superficial‐layer‐enhanced Raman scattering (SLERS), by covering elongated tetrahexahedral gold nanoparticle arrays with a superficial perovskite (CH3NH3PbBr3) film. Plasmonic decay is depressed along the vertical direction away from the noble metal surface and the penetration depth is increased in the perovskite media. The vertical penetration of SLERS is verified by the spatial distribution of the analytes via Raman imaging in layer‐scanning mode.  相似文献   

20.
Surface‐enhanced Raman scattering (SERS) is a new optical spectroscopic analysis technique with potential for highly sensitive detection of molecules. Recently, many efforts have been made to find SERS substrates with high sensitivity and reproducibility. In this Research News article, we provide a focused review on the synthesis of monodispersed silver particles with a novel, highly roughened, “flower‐like” morphology by reducing silver nitrate with ascorbic acid in aqueous solutions. The nanometer‐scale surface roughness of the particles can provide several hot spots on a single particle, which significantly increases SERS enhancement. The incident polarization‐dependent SERS of individual particles is also studied. Although the different “hot spots” on a single particle can have a strong polarization dependency, the total Raman signals from an individual particle usually have no obvious polarization dependency. Moreover, these flower‐like silver particles can be measured by SERS with high enhancement several times, which indicates the high stability of the hot spots. Hence, the flower‐like silver particles here can serve as highly sensitive and reproducible SERS substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号