首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel lanthanum-modified clay water treatment technology (Phoslock®) seems very promising in remediation of eutrophied waters. Phoslock® is highly efficient in stripping dissolved phosphorous from the water column and in intercepting phosphorous released from the sediments. The active phosphorous-sorbent in Phoslock® is the Rare Earth Element lanthanum. A leachate experiment revealed that lanthanum could be released from the clay, but only in minute quantities of 0.13-2.13 μg l−1 for a worst-case Phoslock® dosage of 250 mg l−1. A life-history experiment with the zooplankton grazer Daphnia magna revealed that lanthanum, up to the 1000 μg l−1 tested, had no toxic effect on the animals, but only in medium without phosphorous. In the presence of phosphorous, rhabdophane (LaPO4 · nH2O) formation resulted in significant precipitation of the food algae and consequently affected life-history traits. With increasing amounts of lanthanum, in the presence of phosphate, animals remained smaller, matured later, and reproduced less, resulting in lower population growth rates. Growth rates were not affected at 33 μg La l−1, but were 6% and 7% lower at 100 and 330 μg l−1, respectively, and 20% lower at 1000 μg l−1. A juvenile growth assay with Phoslock® tested in the range 0-5000 mg l−1, yielded EC50 (NOEC) values of 871 (100) and 1557 (500) mg Phoslock® l−1 for weight and length based growth rates, respectively. The results of this study show that no major detrimental effects on Daphnia are to be expected from Phoslock® or its active ingredient lanthanum when applied in eutrophication control.  相似文献   

2.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

3.
Despite the toxicity and widespread use of manganese (Mn) and lead (Pb) as additives to motor fuels and for other purposes, information regarding human exposure in Africa is very limited. This study investigates the environmental exposures of Mn and Pb in Durban, South Africa, a region that has utilized both metals in gasoline. Airborne metals were sampled as PM2.5 and PM10 at three sites, and blood samples were obtained from a population-based sample of 408 school children attending seven schools. In PM2.5, Mn and Pb concentrations averaged 17 ± 27 ng m− 3 and 77 ± 91 ng m− 3, respectively; Mn concentrations in PM10 were higher (49 ± 44 ng m− 3). In blood, Mn concentrations averaged 10.1 ± 3.4 μg L− 1 and 8% of children exceeded 15 μg L− 1, the normal range. Mn concentrations fit a lognormal distribution. Heavier and Indian children had elevated levels. Pb in blood averaged 5.3 ± 2.1 μg dL− 1, and 3.4% of children exceeded 10 μg dL− 1, the guideline level. Pb levels were best fit by a mixed (extreme value) distribution, and boys and children living in industrialized areas of Durban had elevated levels. Although airborne Mn and Pb concentrations were correlated, blood levels were not. A trend analysis shows dramatic decreases of Pb levels in air and children's blood in South Africa, although a sizable fraction of children still exceeds guideline levels. The study's findings suggest that while vehicle exhaust may contribute to exposures of both metals, other sources currently dominate Pb exposures.  相似文献   

4.
This work was designed to determine chemically inert mercury-selenium (Hg-Se) compounds formed in a culture of Pseudomonas fluorescens exposed to Hg2+ and SeIV (selenite). To isolate these compounds, different digestion methods were studied and sodium dodecyl sulfate (SDS) lysis was selected. The Hg0 and non-reactive Hg were determined in two series of cultures containing 0.0-6.00 μg L−1 SeIV (0.0-76.0 μmol L−1) in combination with low 5.00 μg L−1 (0.025 μmol L−1) or high 100 μg L−1 (0.500 μmol L−1) Hg2+. It was found that Hg0 formed in the culture decreased with the increase of initial SeIV, while the non-reactive Hg increased with the SeIV. In cultures with low initial [Hg2+], a median SeIV (2.0 μg L−1 or 25.3 μmol L−1) resulted in about 70% of the added Hg2+ sequestered as non-reactive Hg, and in culture with high initial Hg2+, about 40% was sequestered. P. fluorescens was proved to be indispensible for the formation of the non-reactive Hg-Se compounds. The Hg:Se molar ratio in the non-reactive Hg-Se compounds was close to 1, suggesting the existence of mercuric selenide in cells. Mechanisms for the formation of the non-reactive Hg-Se compounds are proposed.  相似文献   

5.
Wan TJ  Shen SM  Siao SH  Huang CF  Cheng CY 《Water research》2011,45(19):6301-6307
Backside grinding (BG) wastewater treatment typically requires large quantities of chemicals, i.e. polyaluminum chloride (PAC) coagulant and produces considerable amounts of sludge, increasing the loading and cost of subsequent sludge treatment and disposal processes. This study investigated the effects of the addition of magnetic seeds (FeO*Fe2O3) of selected particle sizes and of optimized combinations of magnetic seeds and PAC on the aggregation of silica nanoparticles from BG wastewater and on the sedimentation time at various pH values (5-9). The results show that the turbidity of BG wastewater was significantly reduced by the magnetic aggregation treatment. The dosage of PAC combined with 2.49 g L−1 or 1.24 g L−1 of magnetic seeds was reduced by 83% (from 60 to 10 mg L−1) compared to the conventional process of using only PAC as a coagulant. The turbidity of the BG wastewater, initially 1900-2500 NTU, could also be successfully decreased about to 23 NTU by the addition of 3.74 g L−1 magnetite (FeO*Fe2O3) only at pH 5 with an applied magnetic field of 1000 G. Different coagulation conditions using magnetic seeds combined with coagulant resulted in different aggregation performances. The treatment performance was more effective by using two-stage dosing, in which magnetic seeds and PAC were added separately, than that with one-stage dosing, where the magnetic seeds and PAC were added simultaneously during rapid mixing. The two-stage dosing allowed for a reduction in the optimum dosage of magnetic seeds from 3.74 g L−1 to 2.49 g L−1 or 1.24 g L−1 without affecting performance when coupled with 0.01 g L−1 of PAC coagulant. The developed method effectively reduced the production of waste sludge.  相似文献   

6.
Glazed and non-glazed earthenware is traditionally and widely used in Turkey and most of the Mediterranean and the Middle East countries for cooking and conservation of foodstuff. Acid-leaching tests have been carried out to determine whether the use of glazed and non-glazed earthenware may constitute a human health hazard risk to the consumers. Earthenware was leached with 4% acetic acid and 1% citric acid solutions, and arsenic in the leachates was measured using hydride generation atomic absorption spectrometry. Arsenic concentrations in the leach solution of non-glazed potteries varied from 30.9 to 800 μg L− 1, while the glazed potteries varied generally from below the limit of detection (0.5 μg L− 1) to 30.6 μg L− 1, but in one poorly glazed series it reached to 110 μg L− 1. Therefore, the risk of arsenic poisoning by poorly glazed and non-glazed potteries is high enough to be of concern. It appears that this is the first study reporting arsenic release from earthenware into food.  相似文献   

7.
Compliance with air quality standards requires control of source emissions: fine exhaust particles are already subject to regulation but vehicle fleets increase whilst the non-exhaust emissions are totally uncontrolled. Emission inventories are scarce despite their suitability for researchers and regulating agencies for managing air quality and PM reduction measures. Only few countries in Europe proposed street cleaning as a possible control measure, but its effectiveness is still far to be determined.This study offers first estimates of Real-world Emission Factors for PM10 and brake-wear elements and the effect on PM10 concentrations induced by intense street cleaning trials.A straightforward campaign was carried out in the city of Barcelona with hourly elemental composition of fine and coarse PM to detect any short-term effect of street cleaning on specific tracers of non-exhaust emissions. Samples were analyzed by Particle Induced X-Ray Emission.Real-world Emission Factor for PM10 averaged for the local fleet resulted to be 97 mg veh− 1 km− 1. When compared to other European studies, our EF resulted higher than what found in UK, Germany, Switzerland and Austria but lower than Scandinavian countries. For brake-related elements, total EFs were estimated, accounting for the sum of direct and resuspension emissions, in 7400, 486, 106 and 86 μg veh− 1 km− 1, respectively for Fe, Cu, Sn and Sb. In PM2.5Fe and Cu emission factors were respectively 4884 and 306 μg veh− 1 km− 1.Intense street cleaning trials evidenced a PM10 reduction at kerbside of 3 μg m− 3 (mean daily levels of 54 μg m− 3), with respect to reference stations. It is important to remark that such benefit could only be detected in small time-integration periods (12:00-18:00) since in daily values this benefit was not noticed. Hourly PM elemental monitoring allowed the identification of mineral and brake-related metallic particles as those responsible of the PM10 reduction.  相似文献   

8.
A sampling campaign was carried out for n-chloridazon (n-CLZ) and its degradation product desphenyl-chloridazon (DPC) in the Hesse region (Germany) during the year 2007: a total of 548 environmental samples including groundwater, surface water and wastewater treatment plant (WWTP) effluent were analysed. Furthermore, aerobic degradation of n-CLZ has been studied utilising a fixed bed bioreactor (FBBR).In surface water, n-CLZ was detected at low concentrations (average 0.01 ± 0.06 μg L−1; maximum 0.89 μg L−1) with a seasonal peak, whereas DPC was present throughout the year at much higher concentrations (average 0.72 ± 0.81 μg L−1; maximum 7.4 μg L−1). Higher n-CLZ concentrations were observed in the North compared with South Hesse, which is ascribed to a higher density of agricultural areas. Furthermore, methylated DPC (Me-DPC), another degradation product, was detected in surface water.In the degradation test, n-CLZ was completely converted to DPC at all concentrations tested (Me-DPC was not formed under the test conditions). DPC was resistant to further degradation during the whole experimental period of 98 days. The results obtained suggest persistence and high dispersion of DPC in the aquatic environment.  相似文献   

9.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

10.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

11.
The aim of this paper was to assess the extent of biodegradable dissolved organic carbon formation upon disinfection of water with chlorine dioxide. Wide diversity of natural waters has been subjected to reactions with various amounts of ClO2. For comparison examined waters have also been treated with ozone and chlorine. The application of chlorine dioxide and ozone significantly changed the molecular weight distribution of aquatic organic matter. As a result significant amounts of biodegradable carboxylic acids and aldehydes were generated. The formic, acetic, oxalic and ketomalonic acids as well as formaldehyde, acetaldehyde, glyoxal, methylglyoxal were identified. The productivity of aldehydes calculated for all examined waters and disinfectants amounted 12.7-47.7 μg mg−1 DOC in the case of ozonation, 1.3-8.1 μg mg−1 DOC after chlorination and 1.7-9.4 μg mg−1 DOC for ClO2 treatment. The highest total concentration of carboxylic acids was determined after the ozonation processes. In this case the organic acids' formation potential was in the range 10.8-62.8 μg mg−1 DOC. Relatively high formation potential (5.3-17.9 μg mg−1 DOC) was determined after the oxidation with ClO2 as well. In the case of chlorination, the productivity of organic acids was low and did not exceed 3.4 μg mg−1 DOC. The relatively high correlation between BDOC formation and carboxylic acids' formation potential was observed. Thus, carboxylic acids' formation potential may be used as a measure of water potential to form BDOC.  相似文献   

12.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

13.
Groundwater and core sediments of two boreholes (to a depth of 50 m) from the Chapai-Nawabganj area in northwestern Bangladesh were collected for arsenic concentration and geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10-40 m of depth) range from 2.8 μg L−1 to 462.3 μg L−1. Groundwater geochemical conditions change from oxidized to successively more reduced, higher As concentration with depth. Higher sediment arsenic levels (55 mg kg−1) were found within the upper 40 m of the drilled core samples. X-ray absorption near-edge structure spectroscopy was employed to elucidate the arsenic speciation of sediments collected from two boreholes. Environmental scanning electron microscopy and transmission X-ray microscopy were used to investigate the characteristics of FeOOH in sediments which adsorb arsenic. In addition, a pH-Eh diagram was drawn using the Geochemist's Workbench (GWB) software to elucidate the arsenic speciation in groundwater. The dominant groundwater type is Ca-HCO3 with high concentrations of As, Fe and Mn but low levels of NO3 and SO42−. Sequential extraction analysis reveals that Mn and Fe hydroxides and organic matter are the major leachable solids carrying As. High levels of arsenic concentration in aquifers are associated with fine-grained sediments. Fluorescent intensities of humic substances indicate that both groundwater and sediments in this arsenic hotspot area contain less organic matter compared to other parts of Bengal basin. Statistical analysis clearly shows that As is closely associated with Fe and Mn in sediments while As is better correlated with Mn in groundwater. These correlations along with results of sequential leaching experiments suggest that reductive dissolution of MnOOH and FeOOH mediated by anaerobic bacteria represents an important mechanism for releasing arsenic into the groundwater.  相似文献   

14.
Hong HC  Mazumder A  Wong MH  Liang Y 《Water research》2008,42(20):4941-4948
The major objective of the present study was to investigate the contribution of major biomolecules, including protein, carbohydrates and lipids, in predicting DBPs formation upon chlorination of algal cells. Three model compounds, including bovine serum albumin (BSA), starch and fish oil, as surrogates of algal-derived proteins, carbohydrates and lipids, and cells of three algae species, representing blue-green algae, green algae, and diatoms, were chlorinated in the laboratory. The results showed that BSA (27 μg mg−1 C) and fish oil (50 μg mg−1 C) produced more than nine times higher levels of chloroform than starch (3 μg mg−1 C). For the formation of HAAs, BSA was shown to have higher reactivity (49 μg mg−1 C) than fish oil and starch (5 μg mg−1 C). For the algal cells, Nitzschia sp. (diatom) showed higher chloroform yields (48 μg mg−1 C) but lower HAA yields (43 μg mg−1 C) than Chlamydomonas sp. (green algae) (chloroform: 34 μg mg−1 C; HAA: 62 μg mg−1 C) and Oscillatoria sp. (blue-green algae) (chloroform: 26 μg mg−1 C; HAA: 72 μg mg−1 C). The calculated chloroform formation of cells from the three algal groups, based on their biochemical compositions, was generally consistent with the experimental data, while the predicted values for HAAs were significantly lower than the observed ones. As compared to humic substances, such as humic and fulvic acids, the algal cells appeared to be important precursors of dichloroacetic acid.  相似文献   

15.
Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM2.5 recorded in the gym exceeded the WHO recommended 24-hour limit of 25 μg m−3 in 50% of the days measured. The average 24-h concentrations of PM2.5 (24.03 μg m−3) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 μg m−3) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM2.5–10) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity.  相似文献   

16.
The Asian Dust Aerosol Model 2 (ADAM2) with the MM5 meteorological model has been employed to estimate the dust concentration, and wet and dry depositions of dust in the Asian region for the year of 2007. It is found that the model simulates quite reasonably the dust (PM10) concentrations both in the dust source region (100-110°E and 37-43°N) and the downstream region of Korea. The starting and ending times of most of dust events and their peak concentration occurring times are well simulated. The annual average dust (PM10) concentration near the surface is found to be 171 μg m− 3 over the dust source area, 39 μg m− 3 over the Yellow Sea, 25 μg m− 3 over the Korean peninsula and 17 μg m− 3 over the East Sea. It is also found that the annual total deposition of dust is about 118.1 t km− 2 (dry deposition, 101.4 t km− 2; wet deposition, 16.7 t km− 2) in the dust source region, 19.0 t km− 2 (dry deposition, 7.8 t km− 2; wet deposition, 11.2 t km− 2) in the Yellow Sea, 12.6 t km− 2 (dry deposition, 6.5 t km− 2; wet deposition, 6.1 t km− 2) in the Korean peninsula and 10.7 t km− 2 (dry deposition, 2.1 t km− 2; wet deposition, 8.6 t km− 2) in the East Sea. Their ratios of wet deposition to total deposition of dust in the respective regions are 14%, 59%, 48% and 80%. This clearly indicates that the main dust removal mechanism from the atmosphere is dry deposition over the source region whereas wet deposition predominates in the downstream region of the sea. The estimated dust deposition could adversely impact the eco-environmental system in the downstream regions of the dust source region significantly.  相似文献   

17.
The exchange of phosphorus (P) during the resuspension of sediments into shallow (oxic) waters of deep stratified lakes is regulated by equilibrium dynamics. In this study, we compared the P-sorption characteristics of sediments from 17 shallow and deep littoral sites in an oligo-mesotrophic lake. Zero Equilibrium P Concentration (EPC0) ranged from 0.2 to 5 μg P L−1. EPC0 did not vary with sediment characteristics, but increased with increasing sediment-to-water ratios (SWR). Buffering capacity also increased with increasing SWR up to 1 g L−1, at which point P concentrations were buffered almost perfectly. Therefore, internal P loading in littoral areas may depend primarily on the intensity and duration of sediment resuspension instead of sediment composition, and is expected to be spatially and temporally patchy. Maximum P-sorption capacity (Smax) varied with chemical composition of the sediments, but was generally low, indicating a limited capacity of littoral sediments to retain external inputs of P.  相似文献   

18.
Vanadium (V) when ingested from drinking water in high concentrations (> 15 μg L− 1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+O4)3Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based μ-XRF mapping and μ-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb5(V5+O4)3Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg− 1. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg− 1, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 μg L− 1 notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.  相似文献   

19.
A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (< 177 mg L1) and aluminium (< 85 mg L1) and to increase pH (> 3.2) and alkalinity (≥ 0 mg L1 CaCO3 eq). Secondary objectives were to decrease zinc (< 2.8 mg L1), manganese (< 20.5 mg L1) and sulfate (< 2120 mg L1). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO42. Alkalinity (74%) and pH (95% as H+) were increased. Area adjusted removal rates (Fe = 1.49 ± 0.66 g d1 m2; acidity = 6.7 ± 4.9 g d1 m2) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.  相似文献   

20.
The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe = 5 mg L−1 in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 μg L−1, was found to depend on the presence of CO32− and HCO3 (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H2O2 concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号