首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effectiveness of carbon nanotubes as reinforcements in the next generation of composites is designated by their mechanical behavior as standalone units. One of the most commonly present topological defects, whose effect on the mechanical behavior of carbon nanotubes needs to be clarified, is the Stone–Wales (SW) defect. In this paper, the effect of SW defect on the tensile behavior and fracture of armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) was studied using an atomistic-based progressive fracture model. The model uses the finite element method for analyzing the structure of SWCNTs and the modified Morse interatomic potential for describing the nonlinear force-field of the C–C bonds. In all cases examined, the SW defect serves as nucleation site for fracture. Its effect on the tensile behavior of the SWCNTs depends solely on nanotube chirality. In armchair SWCNTs, contrary to zigzag ones, a significant reduction in failure stress and failure strain was predicted; ranging from 18% to 25% and from 30% to 41%, respectively. In chiral SWCNTs, the effect of the defect is between those of the armchair and zigzag SWCNTs, depending on chiral angle. The stiffness of the nanotubes was not affected. The nanotube size was found to play a minimal role in the tensile behavior of SW-defected SWCNTs; only in cases of very small nanotube diameters, where the fraction of defect area to the nanotube area is high, was a larger decrease in the failure stress predicted.  相似文献   

2.
Crack deflection and penetration at the interface of multi-wall carbon nanotube/amorphous carbon composites were studied via molecular dynamics simulations. In-situ strength of double-wall nanotubes bridging a matrix crack was calculated under various interfacial conditions. The structure of the nanotube reinforcement -ideal multi-wall vs. multi-wall with interwall sp3 bonding - influences the interfacial sliding and crack penetration. When the nanotube/matrix interface is strong, matrix crack penetrates the outermost layer of nanotubes but it deflects within the nanotubes with certain sp3 interwall bond density, resulting in inner wall pullout. With increasing the sp3 interwall bond density, the fracture mode becomes brittle; the fracture energy decrease while the bridging strength increases and then decreases. Our results suggest that the outermost nanotube wall can serve as a sacrificial layer such that the interface may be designed by effectively putting it inside the nanotubes. Controlling the density of sp3 interwall bond within the multiwall carbon nanotube makes the transition from brittle to tough failure modes in the composites even when the matrix/nanotube interface is strong.  相似文献   

3.
Equivalent nonlinear fracture models for pristine and reconstructed one- and two-atom vacancy defected single wall carbon nanotubes are developed by using the molecular mechanics based models where the initial reconstructed nanotube models are obtained by using molecular dynamic simulations and nonlinear characteristic of the covalent bonds are obtained by using the modified Morse potential. As a result of analyses, it is concluded that fractures of all types of nanotubes are brittle, armchair nanotubes are stiffer than zigzag nanotubes and vacancy defects significantly affect the mechanical behavior of nanotubes. In brief, fracture stress and strain values of pristine armchair nanotubes are respectively 30% and 32% larger than those of pristine zigzag nanotubes, and predicted failure stress and strain values of vacancy defected nanotubes are respectively 27% and 52% smaller than those of pristine ones. It is shown that large deformation and nonlinear geometric effects are important on fracture behavior of nanotubes. Comparisons are made with the failure stress and strain results reported in literature that show good agreement with our results.  相似文献   

4.
Carbon nanotubes (CNT) possess remarkable mechanical, thermal and electrical properties, which combined with their low density and high aspect ratio, make them a very attractive candidate as reinforcing materials for the development of an entirely new class of composites. However, to determine CNTs mechanical properties in a direct experimental way is a challenging and not economical task, because of the technical difficulties and the costs involved in the manipulation of nanoscale objects. Moreover, there is still a lack of the fundamental knowledge regarding the strength and failure behaviour of carbon nanotubes.Due to nanoscale, most of the continuum based classical fracture mechanics are not really suitable to describe the failure evolution. Failure of nanotubes has been mainly investigated using molecular dynamics theory. In this paper, we present an innovative method for modelling the failure of carbon nanotubes under uniaxial tensile loading.CNT can be thought as structural systems, where the primary bond between two nearest-neighbouring atoms forms the axially loaded-bearing components member and the individual atom acts as joints of the related load-bearing members.A Finite Element Model, based on the molecular mechanics theory, is proposed in this paper in order to investigate the fracture progress in Zig-Zag and Armchair carbon nanotube with defects under uniaxial tensile stress. The novelty of the proposed approach lies in the use of nonlinear axial and torsional springs to model the local interaction and breakage of bonds of CNT atoms under axial loads. The complete load-displacement relationship of Force/Displacement curve for a (5, 5) and a (9, 0) nanotube up to the complete fracture was obtained. Further, with a continuum assumption, it was possible to define a Stress/Strain curve with ultimate strength and strain. The results show that the effect of chirality on the mechanical properties and failure mode of CNTs was quite significant and cannot be neglected. Moreover, the results are in good agreement with experimental data and classical molecular dynamics simulation validating, therefore, the proposed modelling approach.  相似文献   

5.
Electron beam induced structural transformations are investigated in single-wall carbon nanotubes (SWNTs), double-wall carbon nanotubes (DWNTs) and crossed nanotube junctions. The nanotubes studied here are synthesized by the chemical vapor deposition method. The response of the nanotubes to an electron beam is found to be influenced by the presence of coatings of amorphous carbon, graphene fragments and structural defects on the tube surface. The dependence of structural modifications on electron beam irradiation dose is measured. While nanotubes with amorphous carbon, graphene fragment coverage and/or defects undergo rapid transformation leading to structure disintegration, those without such coverage or defects are more resistant to beam damage. In addition, it is shown that the amorphous carbon coverage on the double-wall nanotubes can be transformed into graphene layers during electron beam irradiation of coated nanotubes. Finally, the relative stability of nanotube side-wall and end-walls are investigated through sub-threshold energy and above threshold energy irradiation of a model system, C60-filled nanotubes (Peapods). The data indicates that electron beams could be used to join nanotubes end-to-end without damaging the side-walls.  相似文献   

6.
Interface fracture of woven fabric composite layers was studied using Mode II fracture testing. Both carbon fiber and E-glass fiber composites were used with a vinyl ester resin. First, the single-step cured (i.e., co-cured) composite interface strength was compared to that of the two-step cured interface as used in the scarf joint technique. The results showed that the two-step cured interface was as strong as the co-cured interface. Carbon nanotubes were then applied to the composite interface using two-step curing, and then followed by Mode II fracture testing. The results indicated a significant improvement of the interface fracture toughness due to the dispersed carbon nanotube layer for both carbon fiber and E-glass fiber composites. The carbon nanotube layer was then evaluated as a means to monitor crack growth along the interface. Because carbon nanotubes have very high electrical conductivity, the electrical resistance was measured through the interface as a crack grew, thus disrupting the carbon nanotube network and increasing the resistance. The results showed a linear relationship between crack length and interface resistance for the carbon fiber composites, and allowed initial detection of failure in the E-glass fiber composites. This study demonstrated that the application of carbon nanotubes along a critical composite interface not only improves fracture properties but can also be used to detect and monitor interfacial damage.  相似文献   

7.
In this paper, (10, 0) zigzag nanotubes and (6, 6) armchair nanotubes are considered to investigate the effects of randomly distributed vacancy defects on mechanical behaviors of single-walled carbon nanotubes. A spatial Poisson point process is employed to randomly locate vacancy defects on nanotubes. Atomistic simulations indicate that the presence of vacancy defects result in reducing nanotube strength but improving nanotube bending stiffness. In addition, the studies of nanotube torsion indicate that vacancy defects prevent nanotubes from being utilized as torsion springs.  相似文献   

8.
Fatigue is one of the primary reasons for failure in structural materials. It has been demonstrated that carbon nanotubes can suppress fatigue in polymer composites via crack-bridging and a frictional pull-out mechanism. However, a detailed study of the effects of nanotube dimensions and dispersion on the fatigue behavior of nanocomposites has not been performed. In this work, we show the strong effect of carbon nanotube dimensions (i.e.?length, diameter) and dispersion quality on fatigue crack growth suppression in epoxy nanocomposites. We observe that the fatigue crack growth rates can be significantly reduced by (1) reducing the nanotube diameter, (2) increasing the nanotube length and (3) improving the nanotube dispersion. We qualitatively explain these observations by using a fracture mechanics model based on crack-bridging and pull-out of the nanotubes. By optimizing the above parameters (tube length, diameter and dispersion) we demonstrate an over 20-fold reduction in the fatigue crack propagation rate for the nanocomposite epoxy compared to the baseline (unfilled) epoxy.  相似文献   

9.
A global–local multiscale finite element method (FEM) is proposed to study the interaction of nanotubes and matrix at the nanoscale near a crack tip. A 3D FE model of a representative volume element (RVE) in crack tip is built. The effects of the length and chirality of single walled carbon nanotube (SWCNT) in a polymer matrix on the fracture behavior were studied in the presence of van der Waals (vdW) interaction as inter-phase region. Detailed results show that with increasing the weight percentage of SWCNT, fracture toughness improves. Three situations of nanotube directions with respect to crack are considered. Results show that bridging condition has minimum stress intensity factor. In addition, it can be seen that the crack resistance improves by increasing the length and chirality for all kinds of nanotubes. Finally, epoxy/SWCNT 10 wt.% has lower stress intensity factor compared to epoxy/halloysite 10 wt.% in similar loading state.  相似文献   

10.
The effect of aligned and randomly oriented carbon nanotube (CNT), with respect to the crack growth plane, on the fracture toughness of polymers is modelled in this paper using the Elastic Plastic Fracture Mechanics. According to a critical length, two dominant toughening mechanisms for CNT-modified polymers are presented, i.e. CNT pull-out and CNT rupture. The model is then used to identify the effect of CNTs geometrical and mechanical properties on the enhancement of fracture toughness in CNT-modified polymers. The key CNT properties are the CNT radius, average length, ultimate strength, elongation before failure, interfacial shear strength between CNTs and the polymer and nanotube volume fraction. Finally, experimental results are compared with the model predictions. The correlation shows that processing of long, aligned CNTs remains the main barrier in achieving major fracture toughness enhancement.  相似文献   

11.
In order to strengthen the interface of a composite scarf joint, this study investigated the benefits of using locally applied carbon nanotubes to reinforce a carbon fiber composite scarf joint. The effect of carbon nanotubes on enhancing the fracture toughness and interface strength was investigated by performing Mode I and Mode II fracture tests with and without carbon nanotubes applied locally at the joint interface. Furthermore, the effects of seawater absorption and different carbon nanotube concentration values on Mode II fracture were investigated. Finally, a partial application of carbon nanotubes only near the crack tip area was considered. During the study, the image correlation technique was used to examine the fracture mechanisms altered by the introduction of carbon nanotubes. The experimental study showed that an optimal amount of carbon nanotubes could increase the fracture toughness of the composite joint interface significantly, especially for Mode II, including a physical change in the fracture mechanism.  相似文献   

12.
Carbon nanotube networks have been used previously for in situ sensing of matrix damage in fiber-reinforced composites. In this research, the ability of carbon nanotube networks to sense and distinguish different types of damage in adhesively-bonded hybrid composite-to-metal joints is evaluated. Toward this end, conductive networks of carbon nanotubes are introduced to the composite substrate as well as the epoxy adhesive. By altering the geometry and chemically treating the steel substrate surface, different failure mechanisms of the single-lap shear joints are achieved. It is demonstrated that these failure mechanisms each possess a distinct resistance response, therefore proving the ability to not only sense failure in situ, but also to distinguish the extent and nature of damage which occurs.  相似文献   

13.
Carbon nanotubes are hexagonally configured carbon atoms in cylindrical structures. Exceptionally high mechanical strength, electrical conductivity, surface area, thermal stability and optical transparency of carbon nanotubes outperformed other known materials in numerous advanced applications. However, their mechanical behaviors under practical loading conditions remain to be demonstrated. This study investigates the critical axial properties of pristine and defected single- and multi-walled carbon nanotubes under axial compression. Molecular dynamics simulation method has been employed to consider the destructive effects of Stone-Wales and atom vacancy defects on mechanical properties of armchair and zigzag carbon nanotubes under compressive loading condition. Armchair carbon nanotube shows higher axial stability than zigzag type. Increase in wall number leads to less susceptibility of multi-walled carbon nanotubes to defects and higher stability of them under axial compression. Atom vacancy defect reveals higher destructive effect than Stone-Wales defect on mechanical properties of carbon nanotubes. Critical axial strain of single-walled carbon nanotube declines by 67% and 26% due to atom vacancy and Stone-Wales defects.  相似文献   

14.
Surface modification of carbon nanotubes is crucial for the dispersion and interfacial adhesion of carbon nanotubes in polymer composites. Here we present a novel method to construct single-walled carbon nanotube/chitosan composites using phosphotungstic acid as an anchor reagent to modify single-walled carbon nanotubes. The most direct benefit from this method is that this modification is mild but effective: the induced defects on single-walled carbon nanotubes are negligible based on Raman and transmission electron microscopy observations; and homogeneous dispersion of single-walled carbon nanotubes in chitosan matrices and strong binding between single-walled carbon nanotubes and chitosan are achieved. Moreover, according to the results of tetrazolium-based colorimetric assays in vitro, we demonstrate that the produced phosphotungstic-acid-modified single-walled carbon nanotube/chitosan composites have good biocompatibility. Thus, our study provides a feasible route to fabricate biocompatible composites containing single-walled carbon nanotubes for potential application in bone tissue engineering.  相似文献   

15.
Multi-wall carbon nanotubes are grown in a chemical vapor deposition process by using bulk gold and copper substrates as catalysts. Nanotube growth starts from a nanometer-sized roughness on the metal surfaces and occurs in a mechanism where the catalyst particle is either at the tip (Au) or root (Cu) of the growing nanotube. Whereas Au leads to nanotubes with good structural perfection, nanotubes grown from Cu show a higher density of defects. High-resolution transmission electron microscopy shows the bonding between Au and carbon at the metal-nanotube interface whereas no bonds between Cu and carbon occur. Highly mobile Au or Cu atoms adsorb at the growing edge of a carbon nanotube from where diffusion along the nanotube wall can lead to the formation of Au or Cu nanowires inside the central hollow of carbon nanotubes.  相似文献   

16.
Interaction of non-rigid walls of double-walled carbon nanotubes is studied within the Frenkel-Kontorova model. It reveals a clearly defined commensurate-incommensurate phase transition. Parameter which determines this phase is calculated for a set of double-walled nanotubes with non-chiral commensurate walls using ab initio interwall interaction energies and elastic properties. Possibility of formation of incommensurability defects in the commensurate phase is considered. The length of the defects and energy of their formation are calculated. Principal scheme of strain nanosensor based on the commensurate-incommensurate phase transition in double-walled nanotube is proposed.  相似文献   

17.
In this study, mode I and mode II interlaminar fracture toughness, and interlaminar shear strength of E-glass non-crimp fabric/carbon nanotube modified polymer matrix composites were investigated. The matrix resin containing 0.1 wt.% of amino functionalized multi walled carbon nanotubes were prepared, utilizing the 3-roll milling technique. Composite laminates were manufactured via vacuum assisted resin transfer molding process. Carbon nanotube modified laminates were found to exhibit 8% and 11% higher mode II interlaminar fracture toughness and interlaminar shear strength values, respectively, as compared to the base laminates. However, no significant improvement was observed for mode I interlaminar fracture toughness values. Furthermore, Optical microscopy and scanning electron microscopy were utilized to monitor the distribution of carbon nanotubes within the composite microstructure and to examine the fracture surfaces of the failed specimens, respectively.  相似文献   

18.
Molecular-mechanics based finite element approach was used to predict the tensile stiffness and strength of single-walled carbon nanotubes. Different types of nanotubes, such as Arm-Chair, Zig-Zag, and chiral type, were discussed in detail. Nanotube stiffness was predicted to be independent of both the nanotube diameter and the nanotube helicity, but Poisson ratio was dependent of the nanotube diameter. In addition to the stiffness, nanotube strength was also analyzed by molecular-mechanics based finite element approach. Modified Morse potential function was selected to model the breakage of CC chemical bond with the separation energy of 7.7 eV. Nanotube strength was predicted at 77–101 GPa with the fracture strain around 0.3. The nanotube strength was found to be moderately dependent of the nanotube helicity, but independent of the nanotube diameter.  相似文献   

19.
We demonstrate that the "electrocatalytic" hydrogen peroxide detection reported at multiwalled carbon nanotube modified electrodes is due to iron oxide particles arising from the chemical vapor deposition nanotube fabrication process rather than due to intrinsic catalysis attributable to the carbon nanotubes arising, for example, from edge plane-like sites/defects.  相似文献   

20.
The pi-pi interaction between pyrene molecules and single-walled carbon nanotubes (SWNTs) or multi-walled carbon nanotubes (MWNTs) was studied by fluorescence, FTIR, Raman spectroscopy and molecular simulation. The carbon nanotubes were incubated in pyrene solution and dried for characterization. A broadband fluorescence emission at 463 nm of the incubated samples was observed, which is similar to that of pyrene excimers but shifts to shorter wavelength. The typical FTIR bands of pyrene shift to lower wavenumbers in the incubated samples. D- and G-bands in Raman spectra of SWNTs also shift to low frequencies. All these spectroscopic evidences reveal the stronger pi-pi stacking interaction between the nanotubes and pyrene molecules over the pyrene dimers, which leads to the formation of pyrene-carbon nanotube complexes. The systems of SWNTs and pyrene molecules were also studied with molecular simulation. It was found from the binding energy calculation that a stronger interaction presents between the pyrene molecule and the nanotube. In addition, the simulation gives some structural information about the pyrene-nanotube complex, such as the staggered conformation of pyrene on nanotube. The effect of defects in carbon nanotube sidewall was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号