首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 252 毫秒
1.
研究了随机粗糙表面的电磁散射问题,在用数值方法研究粗糙表面电磁散射过程中,经常遇到大型的数值计算问题,为此提出一种新的基于积分方程的区域分散算法,采用这种算法,可以将大型计算问题分解为几个小型的问题进行求解。用此新的算法对粗糙表面的散射进行了MonteCarlo模拟,散射计算结果与用直接反演的计算比较结果表明,两种方法符合很好,从而证明了所提方法的可行性,另外,从散射结果我们也得到粗糙表面的背向加强现象。  相似文献   

2.
本文利用数值方法研究指数随机粗糙表面的电磁散射问题。应用矩量法研究指数随机粗糙表面的电磁散射可以使我们获得较为精确的数值结果。但是 ,对于表面散射 ,应用矩量法时 ,表面未知变量的数目非常大 ,即使对于一维表面也需要几千个未知变量。当我们求解矩阵方程时 ,计算机对求解的问题有几个限制 ,一个是内存的限制 ,一个是速度的限制。为了克服内存的限制 ,发展了许多迭代数值算法。本文发展了一种新的数值迭代方法。利用这一方法 ,我们对指数随机粗糙表面的电磁散射问题进行了研究 ,并与矩阵反演方法进行了比较。所得结果表明 ,这种新的迭代法具有很好的收敛性  相似文献   

3.
本文利用数值方法研究指数随机粗糙表面的电磁散射问题,应用矩量法研究指数随机粗糙表面的电磁散射可以使我们获得较为精确的数值结果,但是,对于表面散射,应用短量法时,表面未知变量的数目非常大,即使对于一维表面也需要几千个未知变量,当我们求解矩阵方程时,计算机对求解的问题有几个限制,一个是内存的限制,一个是速度的限制,为了克服内存的限制,发展了许多迭代数值算法,本文发展了一种新的数值迭代方法,利用这一方法,我们对指数随机粗糙表面的电磁散射问题进行了研究,并与矩阵反演方法进行了比较,所得结果表明,这种新的迭代法具有很好的收敛性。  相似文献   

4.
角反射器表面粗糙度对单站RCS的影响   总被引:1,自引:0,他引:1  
研究了角反射器表面粗糙度对其雷达散射截面的影响.角反射器的粗糙表面由随机高斯面模拟,散射计算采用全波数值算法完成.计算结果与实测数据吻合,对实验数据进行了解释,验证了计算模型.通过多组计算结果得出结论,随着粗糙面均方根高度的增加和相关长度的减小,角反射器的非主散射区雷达横截面(RCS)均值提高,到达一定数值后角反射器的主散射区RCS也将受到显著影响.研究结论对角反射器用于RCS标定具有重要应用意义.  相似文献   

5.
针对粗糙表面散射实验中的后向散射增强现象,采用锥形波束入射的矩量法定量计算了分形粗糙表面的后向散射增强效应,研究了波形参数和表面尺寸的匹配问题,分析了不同入射角下散射增强的角宽度,比较了不同分维数和表面模型下散射增强的幅值。数值计算结果证明了该算法的有效性。  相似文献   

6.
针对无界域上具有矩形结构多洞穴电磁散射问题的数值计算提出一种快速算法,该算法可快速计算尺寸较大及高波数的洞穴散射问题.数值算例验证了方法的有效性.  相似文献   

7.
田炜 《科学技术与工程》2013,13(11):2976-2979
一维指数型粗糙土壤表面采用Monte Carlo方法模拟产生,运用矩量法研究了一维指数型粗糙土壤表面及其上方矩形截面导体柱的复合电磁散射。通过数值计算得到了复合散射系数随散射角的变化曲线。讨论了土壤表面高度起伏均方根、土壤湿度、柱体中心高度、柱体倾角对复合散射系数的影响,得到了一维指数型粗糙土壤表面及其上方矩形截面导体柱的复合电磁散射特征。  相似文献   

8.
对于表面电磁散射 ,应用矩量法时 ,表面未知变量的数目非常大 ,即使对于一维表面也需要几千个未知变量 ,当我们求解矩阵方程时 ,计算机对求解的问题有内存和速度的限制。为了克服内存的限制 ,本文提出一种新的基于带形反演的迭代方法 ,并采用这一种新的迭代数值算法对周期表面的电磁散射问题进行了研究 ,并与矩阵反演方法进行了比较 ,所得结果表明 ,这种新的迭代法具有很好的收敛性 ,所提出的计算公式是可行的  相似文献   

9.
对于表面电磁散射,应用矩量法时,表面未知变量的数目非常大,即使对于一维表面也需要几千个未知变量,当我们求解矩阵方程时,计算机对求解的问题有内存和速度的限制。为了克服内存在的限制,本提出了一种新的基于带形反演的迭代方法,并采用这一种新的迭代数值算法对周期表面的电磁散射问题进行了研究,并与矩阵反演方法进行了比较,所得结果表明,这种新的迭代法具有很好的收敛性,所提出的计算公式是可行的。  相似文献   

10.
研究了二维多粗糙度分层粗糙面与上方目标复合电磁散射特性的自适应迭代物理光学算法。采用Monte Carlo法并结合高斯谱函数生成高斯粗糙面,基于分区域建模方法,建立了二维多粗糙度分层粗糙面和上方目标的复合模型。利用物理光学法和等效原理,得到分层粗糙面和目标的直接感应电磁流;基于表面积分方程,分析了分层粗糙面之间以及粗糙面和目标之间的耦合电磁流迭代机理。引入感应电磁流能量改变速率,对传统迭代物理光学法进行改进,使算法自动收敛。将计算结果同多层快速多极子方法和迭代物理光学法进行比较,验证了算法的准确性和高效性。在此基础上,研究了不同目标、不同粗糙度的分层粗糙面的双站RCS计算结果和散射特性,讨论了分层粗糙面间距对双站RCS计算结果和散射特性的影响。本研究为分层环境及上方超低空突袭目标的探测、分类和识别提供了数据支撑和理论基础。  相似文献   

11.
研究小波变换在粗糙表面电磁散射的应用.在用矩量法研究电磁散射问题的时候,基函数的选择是一个非常重要的步骤.不同的基函数对问题的求解规模影响很大.在此,我们利用小波变换中二尺度方程关系,通过对大尺度基函数和小波基函数求解相应的矩阵方程,然后由小尺度基函数与大尺度基函数和小波基函数的合成关系,求出对应于小尺度基函数的矩量法解.这个方法的优点是减少了矩阵方程求解的规模.  相似文献   

12.
高斯型良导体随机粗糙面散射系数的数值计算   总被引:2,自引:0,他引:2       下载免费PDF全文
采用矩量法计算狄利克莱边界条件下一维高斯型随机粗糙面的收发分置的散射系数,运用脉冲基函数和点匹配的矩量法,在入射波为锥形波的条件下,分析了两种频谱函数下的仿真结果。结果表明,该随机面仿真粗糙导体面效果较好,为电磁环境建模提供了一种方法。  相似文献   

13.
Conclusions In this note, the scattering field from the dielectric rough surface is investigated by using the fractal function. Parameters of the fractal function are changed to model the roughness of the surface under consideration. In this way, explicit expression of the scattering field from the rough surface in Kirchhoff approximation can be obtained and other different cases can be easily analysed. We can conclude that the fractal function is a fine tool for solving the problems of scattering from the rough surface. This note can provide the numerical bases for the inverse problems.  相似文献   

14.
基于数值方法(MOM)与基尔霍夫近似(KA)相结合的混合算法计算了二维随机粗糙面与其上方三维双立方体的复合散射特性。首先建立了随机粗糙面与其上方三维双目标的复合模型,将目标划分为MOM区域,粗糙面划分为KA区域,并采用Monte-carlo方法模拟真实粗糙地面。在复合散射场的求解中,首先求出在仅有初始入射场时多目标表面的感应电流;其次,将目标表面感应电流产生的散射场与外部入射场作为KA区域的入射场,求出KA区域表面的感应电流;最后将KA区域的感应电流产生的散射场与外部入射场作为MOM区域的入射场,利用导体目标表面的狄利克莱边界条件求出目标表面电流以及电流系数,并进一步求解出散射场。通过减小了粗糙面各面元的相互耦合及体-面的高阶耦合作用,极大提升了计算速率。在大小尺寸为L_x×L_y=100λ×100λ的粗糙面与棱边长度为l=2λ的立方体目标复合计算中,使用MoM算法产生了747 886个未知量,计算时间为8 821.5s;而使用MOM-KA混合算法产生未知量为26 868个,计算时间为423.8s,仿真结果同时验证了MOM-KA混合算法的准确性。最后,详细讨论了均方根高度、目标间距、高度及立方体尺寸及对复合散射系数的影响。  相似文献   

15.
基于最佳一致逼近的高阶矩量法及其应用   总被引:1,自引:1,他引:0  
文章应用最佳一致逼近理论构建了一种高阶基函数方法,并将其应用于二维电磁散射问题的求解。将计算结果与传统矩量法及解析解比较可知,该高阶矩量法在较低的剖分情况下,具有很高的计算精度。将此新型的高阶基函数方法用于电大导体和其它形状散射问题中,计算结果依然有较高的计算精度,从而有效降低了计算复杂度。  相似文献   

16.
The EM scattering from rough surface has been investigated in the past years. Periodic and random models are often used in modeling the rough surface. Recently, the fractal geometry is rapidly improved. It provides a new way to model the rough surface whose characteristics are long-range order and short-range disorder. In this paper, A fractal function is used to model the rough surface. A scattering coefficient for calculating the angular distribution and the amount of energy in the spectrally scattering field to the fractal characteristics of the surfaces by finding their analytical expressions is derived by using the Kirchhoff solution. In the end, we calculate some scattering patterns. Supported by the National Natural Science Foundation of China Gao Huotao: born in 1964, Graduate student  相似文献   

17.
基于微扰法的指数型粗糙面光散射研究   总被引:1,自引:0,他引:1  
运用微扰法研究了指数型粗糙面的光散射问题,给出了不同极化情形下散射系数的数学表达式,数值计算得到了双站和单站两种情形下散射系数随散射角变化的曲线,讨论了粗糙面高度起伏均方根、相关长度,介质介电常数,入射光波长对散射系数的影响,得出了指数型粗糙面光散射系数的特征,结果表明粗糙面高度起伏均方根、相关长度,介质介电常数,入射光波长对指数型粗糙面光散射系数的影响是比较复杂的。  相似文献   

18.
Mesh morphing is a technique which gradually deforms a mesh into another one. Mesh parameterization, a powerful tool adopted to establish the one-to-one correspondence map between different meshes, is of great importance in 3D mesh morphing. However, current parameterization methods used in mesh morphing induce large area distortion, resulting in geometric information loss. In this paper, we propose a new morphing approach for topological disk meshes based on area-preserving parameterization. Conformal mapping and Möbius transformation are computed firstly as rough alignment. Then area preserving parameterization is computed via the discrete optimal mass transport map. Features are exactly aligned through radial basis functions. A surface remeshing scheme via Delaunay refinement algorithm is developed to create a new mesh connectivity. Experimental results demonstrate that the proposed method performs well and generates high-quality morphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号