首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了综合回收新疆某大型铁矿伴生的有益元素金和锌,对具有代表性的矿石进行了矿石性质研究,查明了矿石中金矿物、锌矿物和铁矿物的赋存状态、嵌布粒度及它们与有益有害元素的共生关系。根据矿石性质,制定了优先浮选金矿物,金浮选尾矿经硫酸铜活化后浮选闪锌矿,锌浮选尾矿磁选铁的工艺流程。金浮选通过两段粗选两段精选获得金精矿金品位27.38×10~(-6),金回收率52.65%;锌浮选通过一段粗选两段扫选,锌粗精矿再磨至-0.037 mm 85%精选四段,获得锌精矿锌品位49.53%,锌回收率81.21%;锌浮选尾矿磁选回收铁,通过一段粗选一段精选,获得铁精矿铁品位65.55%,铁回收率84.71%。  相似文献   

2.
河南某多金属铁矿石选矿试验研究   总被引:3,自引:2,他引:1  
河南某铁矿矿石中除磁铁矿外,还伴生有铜、硫矿物,其中硫矿物有相当一部分为磁黄铁矿。为了给该矿的矿床工业评价及矿石可选性评估提供依据,对该矿矿石进行了选矿试验研究。试验结果表明:采用铜、硫依次浮选-浮选尾矿弱磁选联合工艺流程,可以综合回收矿石中的铜、硫、铁。获得的铁精矿铁品位为65.10%,回收率为57.23%,硫精矿硫品位为42.00%,回收率为95.62%,铜精矿铜品位为19.20%,回收率为52.79%,并且铁精矿含铜和含硫分别为0.03%和0.25%,达到国家铁精矿粉矿二级品的含杂标准。  相似文献   

3.
某细粒低品位铁矿石中磁铁矿与磁黄铁矿紧密共生, 为了在回收磁铁矿的同时, 综合回收伴生的磁黄铁矿资源, 针对矿石性质特点, 采用阶段磨矿-阶段弱磁选-一段磁选精矿浮选脱硫-二段磁选精矿反浮选提铁-反浮选尾矿再磨再选工艺流程, 使用磁黄铁矿高效活化剂CS和铁矿反浮选新型阳离子捕收剂YA, 获得了TFe品位70.05%、S含量0.16%、TFe回收率73.17%的高品位铁精矿和S品位25.86%、TFe含量50.10%、S回收率53.43%的硫精矿, 有效实现了磁铁矿与磁黄铁矿的综合回收。  相似文献   

4.
四川某铁尾矿中铁和硫的综合回收选矿试验   总被引:2,自引:2,他引:0  
四川某铁矿磁选尾矿中含有一定量的铁矿物和硫矿物可以综合回收。根据该尾矿的矿石性质,采用筛分分级--0.5 mm重选预富集-重选粗精矿浮选选硫-浮选尾矿磁选选铁的工艺流程进行选矿试验,获得了硫精矿、强磁性铁精矿和弱磁性铁精矿3种产品。硫精矿硫品位和硫回收率分别为39.66%和82.54%,强磁性铁精矿铁品位和铁回收率分别为62.28%和32.59%%,弱磁性铁精矿分别为51.87%和5.36%。  相似文献   

5.
对秘鲁某铁多金属矿含Cu 0.127%、Au 0.08 g/t、S 2.08%、Fe 40.56%的深部矿石进行了选矿工艺试验研究。该矿原设计选矿工艺流程为铜硫混选—铜硫分离—混选尾矿磁选回收铁,存在铜硫分离难度大、石灰用量高和分选指标不理想等问题。针对原流程存在的问题,根据矿石性质,采用铜硫等可浮-硫浮选-磁选和铜硫等可浮-磁选-铁精矿浮选脱硫两种原则工艺流程进行试验研究,铜硫等可浮分选时,采用选择性的铜捕收剂BK306在无碱条件下将铜和部分易浮硫化物浮出,然后进行铜硫分离回收铜、金;最后通过磁选从浮选尾矿中回收铁。通过铜硫等可浮(粗精矿再磨精选分离)-硫强化浮选-磁选和铜硫等可浮(粗精矿再磨精选分离)-磁选-铁精矿强化浮选脱硫两种试验方案的工艺流程和闭路试验指标的对比分析,最终确定了铜硫等可浮(粗精矿再磨精选分离)-磁选-铁精矿强化浮选脱硫的工艺流程,闭路试验获得含铜19.68%、含金8.26 g/t、铜回收率73.19%、金回收率41.83%的铜精矿,含硫35.58%、硫回收率26.02%的硫精矿,以及含铁69.23%、含硫0.16%、铁回收率91.40%的铁精矿。该工艺既可实现矿石中伴生有价金属铜、金的高效回收,又能显著降低铜硫分离所需的石灰用量,并保证后续磁选作业获得含硫低、铁品质较好的铁精矿。  相似文献   

6.
澳大利亚某含硫铁铜矿的选矿工艺研究   总被引:2,自引:0,他引:2  
针对澳大利亚某含硫铁铜矿样, 采用先浮选硫化矿物、后磁选铁矿物的原则工艺, 可在有效降低铁精矿中硫含量的同时综合回收矿石中的铜、硫。在原矿磨至-0.074 mm粒级占70%后铜硫混选, 粗精矿再磨至-0.074 mm粒级占95%后铜硫分离, 铜硫混选尾矿再弱磁选的闭路试验中, 可以获得铜精矿品位19.93%、铜回收率80.35%, 硫精矿品位32.75%、硫回收率41.13%, 铁精矿铁品位71.45%、铁回收率89.44%(铁精矿含硫0.34%)。  相似文献   

7.
小沙龙铁矿为典型的沉积变质型铁矿,矿石中铁矿物类型繁多,包括了磁铁矿、赤褐铁矿、菱铁矿等多种类型,铁矿物嵌布极细,选矿难度很大。针对该矿石特点,创新性的采用"三段磨矿-弱磁选-中矿强磁抛尾后焙烧-再磨弱磁选"的工艺流程进行选铁试验,结果为:铁精矿品位59.57%、回收率69.36%,铁次精矿品位44.19%、回收率11.20%。  相似文献   

8.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

9.
某含细粒磁黄铁矿铁锌矿石选矿工艺研究   总被引:1,自引:0,他引:1  
某铁锌矿石中可选矿回收的目的矿物为磁铁矿和闪锌矿,但部分闪锌矿中包裹有磁性较强、粒度较细的磁黄铁矿,处理不当易导致铁精矿中硫含量超标或影响锌精矿品位。为了给该矿石的开发提供技术支撑,对其进行了选矿工艺研究。结果表明:采用先浮选锌后弱磁选铁的原则流程,可以解决铁精矿硫超标问题;将锌粗精矿再磨至-400目占85%后再精选,可以保证锌精矿品位。试验最终获得了锌品位为48.74%、锌回收率为86.92%的锌精矿和铁品位为63.29%、铁回收率为90.58%、硫含量为0.29%的铁精矿。  相似文献   

10.
针对白云鄂博混合型铁-稀土矿石生产的铁精矿和稀土精矿回收率低、杂质含量高的问题,按照矿石类型进行分类选别。以霓石型低品位铁-稀土矿石为对象,在系统研究其矿石性质的基础上进行回收铁、稀土的选矿试验。研究结果表明,原矿中TFe品位为17.50%,稀土REO品位为8.43%,主要的铁矿物为磁铁矿,氟碳铈矿和独居石是主要的稀土矿物;脉石矿物主要是霓石、重晶石和方解石等;通过磨矿-两段弱磁选-再磨-弱磁选回收铁,在一段磨矿细度-0.074mm 90%、粗选磁场强度和精选磁场强度分别为112kA/m和96kA/m、再磨细度和再磨磁场强度为-0.045 4mm 90%和96kA/m的条件下获得TFe品位65.83%、TFe回收率69.86%的铁精矿;选铁尾矿在浮选温度60℃、水玻璃用量2.1kg/t、捕收剂H205用量1.0kg/t的条件下经一次粗选、两次扫选的闭路试验可获得REO品位为50.89%,回收率为63.17%的稀土精矿。研究结果为白云鄂博矿的分类选矿提供技术借鉴。  相似文献   

11.
河北某锌铁矿石可回收利用的金属元素主要为Zn、Fe,并伴生可综合回收的Ag、Cd,但矿石性质复杂,主要有用矿物闪锌矿和磁铁矿嵌布粒度细,与脉石矿物解离困难,属较难选锌铁矿石。为了给该矿石的开发利用提供依据,对其进行了选矿工艺研究。结果表明:在-0.074 mm占85%的磨矿细度和-0.038 mm占70%的粗精矿再磨细度下,以石灰为调整剂、硫酸铜为活化剂、丁黄药为捕收剂、原矿经1粗2扫4精闭路浮选,可获得锌品位为49.15%、锌回收率为91.01%的锌精矿,Ag、Cd富集于锌精矿中,品位分别为162 g/t、0.25%,回收率分别为58.12%、92.58%;浮选尾矿经弱磁粗选—粗精矿再磨至-0.043 mm占82%后2次弱磁精选,可得到铁品位为63.18%、铁回收率为56.09%的铁精矿。  相似文献   

12.
为了回收西藏某高铁铜矿的铜与铁等有价元素,进行了先磁选后浮选与先浮选后磁选两种选矿试验方案的比较,最终确定采用先浮选后磁选的工艺流程。进一步进行条件试验并确定药剂制度后,在磨矿细度为-0.074mm占80%、石灰用量为4000g/t、水玻璃用量为1000g/t、丁黄药用量为120g/t的情况下,取得铜品位为21.61%、铜回收率为93.89%的铜精矿与铁品位为55.95%、铁回收率为38.86%的铁精矿,有效实现了资源的利用。  相似文献   

13.
云南东川某铜锌硫化矿石Cu品位为0.64%、Zn品位为6.21%,主要脉石矿物有石英、绢云母、方解石等,且矿石中的矿物多数都构成连生体,给铜锌分离造成困难。对该矿石采用抑锌浮铜的优先浮选工艺流程。在磨矿细度为-0.074 mm占80%条件下,用石灰调节pH,铜粗选用硫酸锌和焦亚硫酸钠组合抑制闪锌矿,Z-200为捕收剂;锌粗选以硫酸铜为活化剂,异丁基黄药为捕收剂;铜和锌均采用“一次粗选一次扫选两次精选”的工艺流程,其中,铜粗精矿需再磨至细度为-0.038 mm占90%,铜第一次精选尾矿需进行扫选。最终,经闭路流程试验获得Cu品位27.87%、Cu回收率75.17%的铜精矿和Zn品位49.23%、Zn回收率94.48%的锌精矿,铜精矿含锌5.41%,锌精矿含铜1.03%,铜锌互含较低,实现了铜锌分离。   相似文献   

14.
邹勤  龙冰  雷小明  杨长安  刘诚 《金属矿山》2020,49(9):111-117
国外某低品位铜锌硫化矿矿床属于矽卡岩型,为确定该矿石中有价金属开发利用的可行性,进行了选矿试验。研究表明,矿石中铜品位为0.38%,锌品位为1.26%,针对矿样组成特性,确定了优先浮选铜, 选铜后的尾矿再浮选锌的工艺流程处理该硫化矿矿石。在磨矿细度为-0.074 mm占74.60%的条件下,选用石灰为矿浆pH调整剂,硫酸锌和亚硫酸钠为组合抑制剂,Z-200为捕收剂优先浮选硫化铜矿物;对选铜尾矿继续 采用石灰调节矿浆pH值,硫酸铜活化被抑制的锌矿物,丁基黄药为捕收剂浮选硫化锌矿物的药剂方案,经“2粗2精”选铜、“1粗3精2扫”选锌的闭路试验,最终获得铜精矿铜品位和回收率分别为22.55%、85.19%和锌 精矿锌品位和回收率分别为44.83%、74.36%,有效地实现了铜锌硫化矿的分离与回收,为国外该类型硫化矿矿石的开发利用提供依据。  相似文献   

15.
齐大山铁矿矿石铁品位为31.56%,其中FeO含量为6.59%,主要铁矿物为赤铁矿和磁铁矿,原采用阶段磨矿-粗细分级-重选-磁选-阴离子反浮选工艺,对微细粒铁矿物回收效果差。为改善细粒铁矿物的回收效果,提高选厂经济效益,对齐大山铁矿石开展了选矿工艺优化研究。结果表明:当一段磨矿细度为-0.074 mm占65%,二段磨矿细度为-0.074 mm占90%时,采用阶段磨矿-粗细分级-阶段重选-磁选-阴离子反浮选流程处理矿石,可以获得铁品位和回收率分别为66.80%和82.90%的综合精矿,其中重选精矿占比高达70.21%,弱磁选精矿占比为7.57%。一段螺旋溜槽粗选尾矿直接给入磁选-反浮选,能有效避免微细粒级铁矿物的损失;降低旋流器分级作业沉砂粒度,增加重选作业处理量;增加弱磁精选作业,直接产出最终精矿等措施,对降低浮选作业药剂用量和最终选矿成本具有重要意义。试验成果对实现鞍山式铁矿石的高效分选具有指导意义。  相似文献   

16.
广东某含硫铁低品位铜矿石主要有用元素铜、硫、铁品位分别为0.51%、27.68%、34.07%。铜赋存状态复杂,以次生硫化铜形式存在的铜占总铜的54.91%,水溶性铜占总铜的26.39%,采用常规浮选方法选别铜回收率低。为探索该矿石中铜、硫、铁的高效分选工艺,对其进行了选冶工艺研究。结果表明:原矿磨细至-0.074 mm占72%时,采用pH=3的硫酸溶液为浸出剂,在液固比为4 mL/g、搅拌转速为1 400 r/min、浸出时间为24 h条件下浸铜,可以获得铜浸出率为93.33%的指标;铜浸渣经自来水搅拌洗涤至pH=6以后,以丁黄药为捕收剂、2号油为起泡剂,经1粗1扫硫浮选,可获得硫品位为48.44%、对铜浸渣回收率为95.57%的高品质硫精矿;浮硫尾矿在磁介质为Φ2 mm棒介质、脉动冲程为16 mm、冲次为280次/min、背景磁感应强度为0.6 T条件下,经1次高梯度强磁选选铁,可获得铁品位为51.42%、对铜浸渣回收率为17.02%的铁精矿。以上试验结果说明,采用铜浸出-硫浮选-铁磁选的工艺流程可以实现矿石中铜硫铁的有效分离。  相似文献   

17.
广西某低品位铜镍矿石含铜0.25%、含镍0.43%,镍主要以镍黄铁矿形式存在,铜主要以黄铜矿形式存在,铜、镍矿物均有一定程度氧化且关系密切。为了给该矿石的开发利用提供依据,对其进行了选矿工艺研究。通过对优先浮铜再浮镍方案、铜镍混合浮选方案、铜镍混合浮选再分离方案以及磁选-铜镍混合浮选方案的对比,决定采用铜镍混合浮选方案处理该矿石。按该方案进行详细的试验研究,结果表明,在-0.074 mm占74%的磨矿细度下,以碳酸钠为矿浆调整剂、丁黄药为捕收剂、2号油为起泡剂,经1粗选2扫选2精闭路浮选,可获得铜品位为5.77%、镍品位为8.31%、铜回收率为86.33%、镍回收率为76.60%的铜镍混合精矿。  相似文献   

18.
对含铅0.48% 、锌0.75%、银90.00 g/t的山西某铅锌银多金属矿进行了选矿试验研究。采用铅银混浮-锌浮选工艺,在磨矿细度-0.074 mm粒级占80%条件下,以水玻璃为调整剂、硫酸锌+亚硫酸钠为锌矿物抑制剂、BK906和BK903G为组合捕收剂、BK-201为起泡剂,优先选铅银,选铅银尾矿以石灰为调整剂、硫酸铜为活化剂、丁基黄药为捕收剂选锌,可获得铅品位27.54%、铅回收率76.47%、银品位5252.5 g/t、银回收率73.03%、锌品位3.87%的铅银混合精矿和锌品位54.96%、锌回收率71.00%、银品位359.6 g/t的锌精矿。  相似文献   

19.
弓长岭选矿厂铁浮选尾矿,品位高,粒度细,-0.074 mm含量约65%,铁矿物在细粒级-0.019 mm富集明显。根据弓长岭选矿厂铁浮选尾矿的矿石性质,利用微细粒级重选设备-悬振选矿机对该尾矿进行再选试验研究,通过分级分选,细粒级部分一次悬振选别可获得品位64.35%,回收率30.93%的铁精矿,粗粒级通过磨矿后(磨矿细度-0.074 mm 85%)再悬振分选,获得的精矿铁品位为59.93%,回收率9.80%,综合铁精矿品位63.22%,回收率40.73%,综合尾矿铁品位降至12.58%,有效的回收了该尾矿中的铁,为弓长岭选矿厂的铁浮选尾矿回收与再利用提供可选方案,其社会及经济效益显著。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号