首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Hydroxy fatty acids (HFA) have gained importance because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) was reported to produce mono-, di-, and trihydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from oleic acid by PR3. Up to now, the substrates used for microbial HFA production were free fatty acids. However, it is possible to utilize triacylglycerides, specifically triolein containing three oleic groups, as a substrate by microbial enzyme system involved in HFA production from oleic acid. In this study we used triolein as a substrate and firstly report that triolein could be efficiently utilized by PR3 to produce DOD. Triolein was first hydrolyzed into oleic acid by the triolein-induced lipase and then the released oleic acid was converted to DOD by PR3. Results from this study demonstrated that natural vegetable oils, without being intentionally hydrolyzed, could be used as efficient substrates for the microbial production of value-added hydroxy fatty acids.  相似文献   

2.
Microbial modification of naturally occurring materials is one of the efficient ways to add new values to them. Hydroxylation of free unsaturated fatty acids by microorganism is a good example of those modifications. Among microbial strains studied for that purpose, a new bacterial isolate Pseudomonas aeruginosa PR3 has been well studied to produce several hydroxy fatty acids from different unsaturated fatty acids. Of those hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was efficiently produced from oleic acid by strain PR3. However, it was highly plausible to use vegetable oil containing oleic acid rather than free oleic acid as a substrate for DOD production by strain PR3. In this study, we firstly tried to use olive oil containing high content of oleic acid as a substrate for DOD production. DOD production from olive oil was confirmed by structural determination with GC, TLC, and GC/MS analysis. DOD production yield from olive oil was 53.5%. Several important environmental factors were also tested. Galactose and glutamine were optimal carbon and nitrogen sources, and magnesium ion was critically required for DOD production from olive oil. Results from this study demonstrated that natural vegetable oils containing oleic acid could be used as efficient substrate for the production of DOD by strain PR3.  相似文献   

3.
Sixteen Pseudomonas aeruginosa strains, including patent strain NRRL B-18602, three recent isolates from composted materials amended with ricinoleic acid, and 12 randomly selected from the holdings of the ARS Culture Collection, were examined for their fatty acid converting abilities. The study examined the bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and ricinoleic acid to 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD). A new DOD-like compound from linoleic acid was observed. All strains except NRRL B-247 exhibited varying levels of DOD production. NRRL B-1000, NRRL B-18602 and NRRL B-23258 with yields up to 84% were among the best DOD producers. TOD production generally paralleled DOD production at a relatively lower yield of up to 15%. Strains NRRL B-1000 and NRRL B-23260 were the best TOD producers. A DOD-like product in low yields was obtained from linoleic acid. The fatty acid bioconversion capability was related neither to growth rate nor to variation in the greenish pigmentation of the strains. Production of significant quantities of DOD and TOD from oleic and ricinoleic acids, respectively, appeared to be a characteristic trait of P. aeruginosa strains. A number of highly effective strains for DOD production were identified.  相似文献   

4.
Hydroxy fatty acids (HFAs), originally found in small amount mainly from plant systems, are well known to have special properties such as higher viscosity and reactivity compared with other normal fatty acids. Recently, various microbial strains were tested to produce HFAs from different unsaturated fatty acids. Among those microbial strains tested, Pseudomonas aeruginosa PR3 are well known to utilize various unsaturated fatty acids to produce mono-, di-, and tri-HFAs. Previously, we reported that strain PR3 could utilize triolein as a substrate for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) via the induction of lipase activity (Chang et al., Appl Microbiol Biotechnol, 74:301–306, 2007). In this study, we focused on the development of the optimal environmental conditions for DOD production from triolein by PR3. Optimal initial medium pH and incubation temperature were pH 8.0 and 25°C, respectively. Magnesium ion was essentially required for DOD production. Optimal inoculum size, time for substrate addition, and substrate concentration were 1%, 12 to 24 h, and 300 mg, respectively.  相似文献   

5.
Hydroxy fatty acids (HFAs), originally obtained in small amounts from plant systems, are good examples of structurally modified lipids, and they render special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial potential in a wide range of applications. Recently, various microbial strains were tested for the production of HFAs from different unsaturated fatty acids since HFA production is limited to plant systems. Among the microbial strains tested, Pseudomonas aeruginosa PR3 has been well studied for the production of 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid. Previously, we reported that strain PR3 could utilize triolein instead of oleic acid as a substrate for the production of DOD (Appl. Microbiol. Biotechnol. 2007, 74: 301–306). In this study, we focused on utilization of vegetable oil as a substrate for DOD production by PR3. Consequently, strain PR3 efficiently utilized high oleic safflower oil as a substrate for DOD production. Optimal initial medium pH and incubation time were pH 8.0 and 72 h, respectively. Optimal carbon and nitrogen sources were fructose and glutamine, respectively. Results from this study demonstrate that normal vegetable oils could be used as efficient substrates for the production of value-added HFAs by microbial bioconversion.  相似文献   

6.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28°C and 300 rpm for 16–20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28°C, and 40–60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD. Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

7.
A new compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD), produced from oleic acid by a new bacterial isolate PR3, was discovered in 1991. We have now identified isolate PR3 as a strain of Pseudomonas aeruginosa by DNA reassociation studies. Strain PR3 also produced a crystalline yellowish compound the structure of which, as determined by GC/MS and NMR, is phenazine 1-carboxylic acid (PCA). In cultures of PR3, high PCA production was associated with low DOD accumulation.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

8.
A bacterial isolate, Pseudomonas aeruginosa (PR3), has been reported to produce a new compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD), from ricinoleic acid (Kuo TM, LK Manthey and CT Hou. 1998. J Am Oil Chem Soc 75: 875–879). The reaction is unique in that it involves an introduction of two additional hydroxyl groups at carbon 7 and 10 and a rearrangement of the double bond from carbon 9–10 (cis) to 8–9 (trans). In an effort to elucidate the metabolic pathway involved in the formation of TOD from ricinoleic acid by PR3, we have isolated another compound from the reaction mixture using HPLC. The structure of the new compound was determined to be 10, 12-dihydroxy-8(E)-octadecenoic acid (DHOD) by GC/MS, FTIR, and NMR. The structural similarity between DHOD and TOD and the results from the time course study of the above two compounds strongly suggested that DHOD was an intermediate in the bioconversion of ricinoleic acid to TOD by PR3. The optimum pH and temperature for the production of DHOD from ricinoleic acid by PR3 was 6.5 and 25°C, respectively. This is the first report on the production of 10,12-dihydroxy-8(E)-octadecenoic acid from ricinoleic acid by PR3. Journal of Industrial Microbiology & Biotechnology (2000) 24, 167–172. Received 28 July 1999/ Accepted in revised form 18 November 1999  相似文献   

9.
An isolated bacterium that converted unsaturated fatty acids to hydroxy fatty acids was identified as Stenotrophomonas nitritireducens by API analysis, cellular fatty acids compositions, sequencing the full 16S ribosomal ribonucleic acid, and evaluating its nitrite reduction ability. S. nitritireducens has unique regio-specificity for C16 and C18 cis-9 unsaturated fatty acids. These fatty acids are converted to their 10-hydroxy fatty acids without detectable byproducts. Among the cis-9-unsaturated fatty acids, S. nitritireducens showed the highest specificity for linoleic acid. The cells converted 20 mM linoleic acid to 13.5 mM 10-hydroxy-12(Z)-octadecenoic acid at 30°C and pH 7.5 with a yield of 67.5% (mol/mol).  相似文献   

10.
Trihydroxy unsaturated fatty acids with 18 carbons have been reported as plant self-defense substances. Their production in nature is rare and is found mainly in plant systems. Previously, we reported that a new bacterial isolate, Pseudomonas aeruginosa PR3, converted oleic acid and ricinoleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid, respectively. Here we report that strain PR3 converted linoleic acid to two compounds: 9,10,13-trihydroxy-11(E)-octadecenoic acid (9,10,13-THOD) and 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-THOD). Stereochemical analyses showed the presence of 16 different diastereomers — the maximum number possible. The optimum reaction temperature and pH for THOD production were 30°C and 7.0, respectively. The optimum linoleic acid concentration was 10 mg/ml. The most effective single carbon and nitrogen sources were glucose and sodium glutamate, respectively. However, when a mixture of yeast extract (0.05%), (NH4)2HPO4 (0.2%), and NH4NO3 (0.1%) was used as the nitrogen source, THOD production was higher by 8.3% than when sodium glutamate was the nitrogen source. Maximum production of total THOD with 44% conversion of substrate was achieved at 72 h of incubation, after which THOD production plateaued up to 240 h. THOD production and cell growth increased in parallel with glucose concentration up to 0.3%, after which cell growth reached its maximum and THOD production did not increase. These results suggested that THODs were not metabolized by strain PR3. This is the first report of microbial production of 9,10,13- and 9,12,13-THOD from linoleic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 109–115. Received 18 March 2000/ Accepted in revised form 09 June 2000  相似文献   

11.
The incorporation of exogenously supplied fatty acids, palmitic acid, palmitoleic acid, oleic acid and linoleic acid, was examined in the yeast Schizosaccharomyces pombe at two growth temperatures, 20 °C and 30 °C. Fatty acids supplied to S. pombe in the growth medium were found to be preferentially incorporated into the cells, becoming a dominant species. The relative increase in exogenous fatty acids in cells came at the expense of endogenous oleic acid as a proportion of total fatty acids. Lowering the temperature at which the yeast were grown resulted in decreased levels of incorporation of the fatty acids palmitic acid, palmitoleic acid and linoleic acid compared to cells supplemented at 30 °C. In addition, the relative amount of the endogenously produced unsaturated fatty acid oleic acid, while greatly reduced compared to unsupplemented cells, was increased in cells supplemented with fatty acids at 20 °C compared to supplemented cells at 30 °C. The differential production of oleic acid in S. pombe cells indicates that regulation of unsaturated fatty acid levels, possibly by control of the stearoyl-CoA desaturase, is an important control point in membrane composition in response to temperature and diet in this species.  相似文献   

12.
Pseudomonas aeruginosa strain PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). The bioconversion was scaled up in a 7-l bench-top, stirred-batch reactor to produce DOD for testing of potential industrial uses. Aeration was supplied continuously from the top through two ports on the headplate and periodically through a bottom sparger, in conjunction with the use of marine impellers for agitation. This unique aeration arrangement maintained the dissolved O2 concentration in the 40–60% range during the period of maximal bioconversion and it also avoided excessive medium foaming during the reaction. Furthermore, the level of dissolved O2 in the first 24 h of reaction played an important role in the initial rate of DOD production. DOD production reached a plateau after 72 h with a yield up to 100 g (or 50% recovery) from a total of 9 l medium from two reactors run simultaneously. The final culture broth was processed using newly adapted procedures in the pilot plant that included crystallization of DOD from ethyl acetate solution at –15°C. The newly developed bioprocess will serve as a platform for the scale-up production of other value-added products derived from vegetable oils and their component fatty acids.  相似文献   

13.
Lipoxygenases (LOXs) constitute a family of lipid-peroxidizing enzymes that catalyze the oxidation of unsaturated fatty acid containing a (1Z,4Z)-pentadiene structural unit, leading to formation of conjugated (Z,E)-hydroperoxydienoic acid. LOXs are known to be widely distributed in plants and animals. Recently, several microbial LOXs were reported to be involved in the production of hydroperoxy fatty acids. Among the microorganisms that produce hydroxy fatty acids, Pseudomonas aeruginosa PR3 is known to convert linoleic acid to trihydroxy fatty acid, which suggests the involvement of a LOX enzyme. Based on these reports, we identified a novel thermostable LOX from P. aeruginosa PR3 strain. The protein was purified 34.3-fold with a recovery rate of 5.14%. The Km and Vmax values of the purified enzyme were 3.57 mM and 0.73 μmol/min//mg, respectively. Heat stability of the purified enzyme was unexpectedly high with an LD50 of 90 min at 80°C, although P. aeruginosa PR3 is known as a mesophilic bacterium. Substrate specificity of the purified enzyme was restricted only to unsaturated fatty acids carrying a (1Z,4Z)-pentadiene unit.  相似文献   

14.
This study was carried out to identify unknown allelochemicals released from Myriophyllum spicatum and to investigate their anti-cyanobacterial effects. A series of analyses of culture solutions and methanol extracts of M. spicatum using gas chromatograph equipped with a mass selective detector revealed that M. spicatum released fatty acids, specifically, nonanoic, tetradecanoic, hexadecanoic, octadecanoic, and octadecenoic acids. Nonanoic, cis-6-octadecenoic, and cis-9-octadecenoic acids significantly inhibited growth of Microcystis aeruginosa, whereas tetradecanoic, hexadecanoic, and octadecanoic acids did not show any effect. When the inhibitory effect of nonanoic acid was compared with those of 4 polyphenols and eugeniin, which are anti-cyanobacterial compounds previously reported to be released by M. spicatum, nonanoic acid was found to be the most inhibitory to M. aeruginosa. These results indicate that not only polyphenols and eugeniin but also fatty acids such as nonanoic acid must be studied to reveal how M. spicatum exerts its allelopathic effect on M. aeruginosa.  相似文献   

15.
An hydroponic culture was conducted to investigate the effect of saline stress on the essential oil and fatty acid composition of Tunisian coriander (Coriandrum sativum L.) roots. Ten days old coriander seedlings were treated during 3 weeks with different NaCl concentrations (0, 25, 50 and 75 mM). Roots volatile components and fatty acids were analyzed. The essential oil yield was 0.06% in the control, on the basis of dry matter weight, and did not changed at low concentration (25 mM), while it increased significantly with increasing NaCl concentrations to reach 0.12 and 0.21% at 50 and 75 mM NaCl, respectively. The major volatile component was (E)-2-dodecenal with 52% of total essential oil constituents, followed by decanal, dodecanal, (E)-2-tridecenal and (E)-2-dodecenal. Further, the amount of these compounds was affected differently by the NaCl level. Total fatty acid amount of coriander roots increased significantly only with 50 and 75 mM NaCl. Three major fatty acids: linoleic (43%), oleic (25.5%) and palmitic (21.6%) were identified. Linoleic acid amount remains unchanged at 25 mM, while it increased with raising NaCl concentrations. However, oleic acid amount decreased only at 25 mM and no effect was observed at 50 and 75 mM. Fatty acid percentages were differently affected by salt. The oleic/linoleic ratio was reduced with raising NaCl concentrations.  相似文献   

16.
Summary Previously, we reported the discovery of a new compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) which was produced from oleic acid by a new bacterial isolate PR3 [6,7]. The reaction is unique in that it involves a hydroxylation at two positions and a rearrangement of the double bond of the substrate molecule. Now, we have isolated another compound from the reaction mixture determined by GC/MS to be 10-hydroxy-8-octadecenoic acid (HOD). NMR and IR data indicate that the unsaturation is probablycis. The optimum pH and temperature for the production of HOD by strain PR3 were 6.5 and 30°C, about the same as those for DOD. However, the amount of HOD detected remained small throughout an 48-h reaction period during which the amount of DOD increased sharply. At 48 h of reaction, the ratio between HODDOD was 110. HOD may be an intermediate in the biosynthesis of DOD from oleic acid.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

17.
Summary Sixty-two cultures from the ARS Culture Collection and 10 cultures isolated from soil and water samples collected in Illinois were screened for their ability to convert agricultural oils to value-added industrial chemicals. A new compound, 7,10-dihydroxy-8-(E)-octadecenoic acid (DOD) was produced from oleic acid by a new strain,Pseudomonas sp. PR3 isolated from a water sample in Morton, IL. Strain PR3 is a motile, small rod-shaped, Gram-negative bacterium. It has multiple polar flagellae and is oxidase-positive. Strain PR3 grows aerobically and cannot grow anaerobically. The strain produces white, smooth colonies on agar plate and no water-soluble pigment. The yield of the product was greater than 60%. The optimum time, pH and temperature for the production of DOD were: 2 days, 7.0, and 30°C, respectively. Glycerol and dextrose support the growth of strain PR3, but the cells grown from the former failed to catalyse the conversion of oleic acid to DOD. The production of DOD is unique in that it involves a hydroxylation at two positions and a rearrangement of the double bond of the substrate molecule.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

18.
Smith MA  Moon H  Chowrira G  Kunst L 《Planta》2003,217(3):507-516
Expression of a cDNA encoding the castor bean ( Ricinus communis L.) oleate Delta12-hydroxylase in the developing seeds of Arabidopsis thaliana (L.) Heynh. results in the synthesis of four novel hydroxy fatty acids. These have been previously identified as ricinoleic acid (12-hydroxy-octadec- cis-9-enoic acid: 18:1-OH), densipolic acid (12-hydroxy-octadec- cis-9,15-enoic acid: 18:2-OH), lesquerolic acid (14-hydroxy-eicos- cis-11-enoic acid: 20:1-OH) and auricolic acid (14-hydroxy-eicos- cis-11,17-enoic acid: 20:2-OH). Using mutant lines of Arabidopsis that lack the activity of the FAE1 condensing enzyme or FAD3 ER Delta-15-desaturase, we have shown that these enzymes are required for the synthesis of C20 hydroxy fatty acids and polyunsaturated hydroxy fatty acids, respectively. Analysis of the seed fatty acid composition of transformed plants demonstrated a dramatic increase in oleic acid (18:1) levels and a decrease in linoleic acid (18:2) content correlating to the levels of hydroxy fatty acid present in the seed. Plants in which FAD2 (ER Delta12-desaturase) activity was absent showed a decrease in 18:1 content and a slight increase in 18:2 levels corresponding to hydroxy fatty acid content. Expression of the castor hydroxylase protein in yeast indicates that this enzyme has a low level of fatty acid Delta12-desaturase activity. Lipase catalysed 1,3-specific lipolysis of triacylglycerol from transformed plants demonstrated that ricinoleic acid is not excluded from the sn-2 position of triacylglycerol, but is the only hydroxy fatty acid present at this position.  相似文献   

19.
The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. coli fabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.  相似文献   

20.
Effect of various fatty acids on the membrane potential of an alkaliphilic Bacillus, YN-2000, was examined. Addition of unsaturated fatty acids such as palmitoleic acid, oleic acid, linoleic acid, and linolenic acid at 30 M caused the instantaneous depolarization of the membrane potential of the bacterium, which appears to result in the drastic decrease of viability. On the other hand, no depolarization was detected by the addition of saturated acids such as palmitic acid, stearic acid, and 12-hydroxystearic acid even at 1 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号