首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The complexation reactions of beryllium(II) ion with 1-(2,4-dihydroxy-1-phenylazo)-8-hydroxy-3,6-naphthalenedisulfonate (H-resorcinol) are studied. The acid dissociation constants of H-resorcinol, H(3)L(2-), at 293 K and I = 0.10 [K(OH, NO(3))] are pK(a)((1)) = 5.67, pK(a)((2)) = 8.57, and pK(a)((3)) > 13. The formation constant at 293 K and I = 0.10 [(K,H)NO(3)] is estimated to be log[{[Be(HL)(2-)][H(+)](2)}/{[Be][H(3)L(2-)]}] = -4.58, and pK(a)' = 6.39 for [Be(HL)](2-), which give the basis for the optimization of the precolumn chelation reactions and the masking system with EDTA. The kinetic data for ligand substitution reactions with sulfosalicylate ion are also reported to demonstrate the remarkable inertness of the Be chelate, which is suitable for HPLC separation. Reported is an accurate method for determining traces of Be(II) ion at nanomolar levels with photometric detection coupled with ion-pair reversed-phase HPLC. The chelate, [Be(II)L](3-), is efficiently separated on an Asahipak ODP-50 column using tetrabutylammonium bromide as an ion-pairing agent in a methanol (35 wt %)-water eluent. Only Al and Fe give peaks under the conditions used. The large molar absorptivity of the H-resorcinol chelate, 3.99 × 10(4) M(-1) cm(-1) at 500 nm, and the short retention time with excellent peak resolution ensure the ultralow detection limit (3σ blank) down to 7.2 ppt (0.8 nM) with no preconcentration procedures. The excellent toughness toward the matrix influence was demonstrated using the model solution for an air-dust sample. The HPLC separation, coupled with the EDTA masking procedure, enables one to detect Be(II) ion at 20 nM in the presence of metals at the natural abundance levels in air samples, such as Al, Fe, Ca, Mg, Zn, and Pb at 240, 140, 300, 66, 16, and 6.2 μM, respectively, in the final solution.  相似文献   

2.
A novel technique for the trace analysis of metal ions Zn(II), Be(II), and Bi(III) in bulk solutions is discussed. This technique involves the generation of a chemiluminescence signal from alkaline phosphatase catalyzed hydrolysis of a phosphate derivative of 1,2-dioxetane. Zn(II) can be determined by two methods, reactivation of the alkaline phosphatase apoenzyme and inhibition of the native enzyme. Be(II) and Bi(III) can be determined quantitatively by inhibition of the native enzyme. Subppb to ppm level detection of Zn(II), Be(II), and Bi(III) has been achieved. Initial studies with mixed metals are also reported. The technique described is rapid and sensitive and can be readily applied to the microassay of heavy metal ions.  相似文献   

3.
A new thiosemicarbazone, benzildithiosemicarbazone (BDTSC), is proposed as a sensitive and selective analytical reagent for extractive spectrophotometric determination of Cd(II). BDTSC reacts with cadmium(II) to give a yellow-colored complex in ammonium chloride-ammonium hydroxide buffer of pH 10.5, which is easily extracted into isoamylalcohol with 1:1 composition having a maximum absorbance at wavelength 360 nm. The molar absorptivity and Sandell's sensitivity are found to be 0.196 x 10(4)dm3 mol(-1)cm(-1) and 0.008 microg cm(-2) of Cd(II), respectively. The instability constant of the method has been calculated by Asmus' method as 5.05 x 10(-5) (which is in close agreement with the value obtained by Edmonds and Birnbaum's method) at room temperature. The interfering effect of various cations and anions has also been studied. The method has been successfully applied for the determination of Cd(II) in several standard reference materials as well as environmental samples, medicinal leaves and leafy vegetables.  相似文献   

4.
The contamination of metal ions from reagents used frequently restricts the practical detection limit of the metal ion, which itself is a source of contamination. We have found a novel solution to this problem, a chemical-suppressing method of contaminant metal ions on a reversed-phase HPLC for Al3+ with a detection limit of 7.6 x 10(-11) mol dm(-3) (2.1 ng dm(-3)) by only adding a certain agent into all stock solutions without any preconcentration or purification steps. This technique decreases the concentration of the contaminant Al3+ originating from the reagents by more than 1 order of magnitude using selective derivatization of sample Al3+ ions to a powerful fluorescent complex at a metastable state in the precolumn chelation processes. Meanwhile, the contaminant Al3+ remains as a nonfluorescent complex with a blocking reagent in order to suppress the contamination. This selective derivatization is achieved by the accumulation of several complexation processes based on the difference of formation, dissociation, and ligand-exchange kinetics and the thermodynamics between the derivatizing reagent, the 4',5'-geometorical isomer of calcein, and the blocking reagent, o,o'-dihydroxyazobenzene. This simple and smart HPLC system was validated through recovery tests of environmental and biological samples.  相似文献   

5.
Equilibrium study of ion-pair extraction of a cationic water-soluble porphyrin [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin, H(2)tmpyp(4+)] and its metalloporphyrins (MP) into the acetonitrile layer, separated by addition of sodium chloride (4.00 mol dm(-)(3)) to a 1:1 (v/v) acetonitrile-water mixed solvent, was carried out to develop a new and useful method for the determination of a subnanogram amount of copper(II). M denotes Zn(2+), Cu(2+), Co(3+), Fe(3+), and Mn(3+), and P(2)(-) is porphyrinate ion. The extraction and dissociation constants of the ion-pair complexes, defined by K(ex) = [MP(ClO(4))(4)](org)[MP(4+)](aq)(-)(1)[ClO(4)(-)](aq)(-)(4), K(dis,1) = [MP(ClO(4))(3)(+)](org)[ClO(4)(-)](org)[MP(ClO(4))(4)](org)(-)(1), and K(dis,2) = [MP(ClO(4))(2)(2+)](org)[ClO(4)(-)](org)[MP(ClO(4))(3)(+)](org)(-)(1), were determined by taking into account the partition constant of sodium perchlorate (K(D) = 1.82 ± 0.01). The equilibrium constants were found to be K(ex)K(dis,1) = (7.2 ± 1.3) × 10(4), (6.4 ± 0.9) × 10(4), (1.35 ± 0.13) × 10(5), (4.8 ± 0.6) × 10(3), (1.23 ± 0.05) × 10(4), and (1.42 ± 0.07) × 10(3) at 25 °C for the free base porphyrin (H(2)tmpyp(4+)) and the metalloporphyrins of zinc(II), copper(II), cobalt(III), iron(III), and manganese(III), respectively. The K(dis,2) values were (2.9 ± 1.4) × 10(-)(2), (3.1 ± 1.1) × 10(-)(2), (8.0 ± 4.9) × 10(-)(3), and (5.1 ± 2.2) × 10(-)(2) for the free base porphyrins and the metalloporphyrins of zinc(II), copper(II), and cobalt(III), respectively. The results were developed for determination of a trace amount of copper(II) (3 × 10(-)(8)-4 × 10(-)(6) mol dm(-)(3)) in natural water samples using H(2)tmpyp(4+) with a molar absorptivity of 3.1 × 10(5) mol(-)(1) dm(3) cm(-)(1) at a precision of 1.3% (RSD). The determination of copper(II) was not interfered by the presence of 10(-)(4) mol dm(-)(3) of Mn(2+), Co(2+), Ni(2+), Hg(2+), Cd(2+), Ag(+), Cr(3+), V(5+), Al(3+), Mg(2+), Ca(2+), Br(-), I(-), SCN(-), and S(2)O(3)(2)(-) and 10(-)(5) mol dm(-)(3) of Fe(3+), Zn(2+), and Pd(2+).  相似文献   

6.
Tris(2,2'-bipyridyl)ruthenium can be excited to fluorescence by visible light (lambda abs 454 nm, lambda em 607 nm) when in the M(II) oxidation state, but not in the M(III) state. A novel chromatographic detection method using the non-fluorescent M(III) form of the complex as a postcolumn fluorogenic reagent is demonstrated. The M(III) form is a powerful oxidizing agent (E degree = 1.27 V vs NHE, 1.05 V vs Ag/AgCl). The M(III) reagent is generated on-line from the M(II) form of the complex by a highly efficient porous carbon electrode and then reacted briefly with chromatographic effluent; the M(II) created by electron transfer from oxidation-susceptible analytes is then detected by fluorescence. The fluorescence detector can be calibrated for number of electrons transferred by injection of either M(II) or an oxidative standard such as ferrocyanide. It is hoped that this redox-based detection scheme will provide an alternative to electrochemical detection. Among the advantages are freedom from surface fouling and the potential for extremely low detection limits. The scheme was applied to detection of the peptide dynorphin A and several of its fragments. Dynorphin A contains tyrosine at the N-terminus (position 1) and tryptophan in position 15; these amino acid residues are susceptible to oxidation and peptides containing them can be detected on that basis. Flow injection testing of the model compounds Tyr-Gly-Gly-Phe-Leu and Gly-Gly-Trp-Gly indicated that tyrosine transferred approximately 1 electron to the M(III) reagent and that tryptophan transferred approximately 4 electrons. Similar results were obtained from the chromatographic runs. Dynorphin A and six dynorphin A fragments containing the N-terminal tyrosine were detected easily at 100 nM concentration (14 pmol) using laser-induced fluorescence. As expected, one fragment that did not contain tryptophan or tyrosine was not detected. A mass detection limit of 80 fmol was estimated for the tyrosine-containing fragments.  相似文献   

7.
A new tris(2-aminoethyl) amine (TREN) functionalized silica gel (SG-TREN) was prepared and investigated for selective solid-phase extraction (SPE) of trace Cr(III), Cd(II) and Pb(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Identification of the surface modification was characterized and performed on the basis of FT-IR. The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 4, the maximum adsorption capacity of Cr(III), Cd(II) and Pb(II) onto the SG-TREN were 32.72, 36.42 and 64.61 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 5 mL of 0.1 mol L(-1) HCl. Common coexisting ions did not interfere with the separation. According to the definition of International Union of Pure and Applied Chemistry, the detection limits (3sigma) of this method for Cr(III), Cd(II) and Pb(II) were 0.61, 0.14 and 0.55 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=11). The application of this modified silica gel to preconcentration trace Cr(III), Cd(II) and Pb(II) of two water samples gave high accurate and precise results.  相似文献   

8.
A method for separation-preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions by membrane filtration has been described. The method based on the collection of analyte metal ions on a cellulose nitrate membrane filter and determination of analytes by flame atomic absorption spectrometry (FAAS). The method was optimized for several parameters including of pH, matrix effects and sample volume. The recoveries of analytes were generally in the range of 93-100%. The detection limits by 3 sigma for analyte ions were 0.02microgL(-1) for Pb(II), 0.3microgL(-1) for Cr(III), 3.1microgL(-1) for Cu(II), 7.8microgL(-1) for Ni(II) and 0.9microgL(-1) for Cd(II). The proposed method was applied to the determination of lead, chromium, copper, nickel and cadmium in tap waters and RM 8704 Buffalo River Sediment standard reference material with satisfactory results. The relative standard deviations of the determinations were below 10%.  相似文献   

9.
本文试验反相高效液相色谱法分离分析水中氯离子、硝酸根和硫酸根的条件,研究可能干扰、提高选择性和提高灵敏度的方法,建立应用于自来水和海水等实际样品的分离分析方法。  相似文献   

10.
2,2',3,4-Tetrahydroxy-3',5'-disulphoazobenzene (tetrahydroxyazon 2S) has been synthesized for the first time. This reagent has been used for the spectrophotometric determination of aluminium and indium ions. The method is very sensitive and selective for the direct determination of aluminium and indium. The optimum pH and absorbance of complexes formed of tetrahydroxyazon 2S with aluminium and indium are 5; 500 nm and 495 nm for Al and In, respectively. The system obeys Beer's law at 0.05-1.6 microg mL(-1) of aluminium and 0.06-2.1 microg mL(-1) of indium concentration. The molar absorptivity is 6.42 x 10(4)L mol(-1)cm(-1) for aluminium and 7.70 x 10(4)L mol(-1)cm(-1) for indium. The molar compositions of the complexes are 1:1 at optimum conditions. Alkaline and alkaline earth elements, halogens, thiourea, ascorbic acid, Cd(II), Pb(II), Mn(II), Zn(II), Co(II), Ni(II), Cr(III), Bi(III), La(III), Si(IV) do not interfere this method. The method can be applied to the direct spectrophotometric determination of trace amounts of aluminium in steel, alloys, waste water, river waters, spring water and ground water. The method was also successfully applied to the indium determination in artificial mixture.  相似文献   

11.
The multifunctional ligand, thiosemicarbazide, was physically loaded on neutral alumina. The produced alumina-modified solid phase (SP) extractor named, alumina-modified thiosemicarbazide (AM-TSC), experienced high thermal and medium stability. This new phase was identified based on surface coverage determination by thermal desorption method to be 0.437+/-0.1 mmol g(-1). The selectivity of AM-TSC phase towards the uptake of different nine metal ions was checked using simple, fast and direct batch equilibration technique. AM-TSC was found to have the highest capacity in selective extraction of Hg(II) from aqueous solutions all over the range of pH used (1.0-7.0), compared to the other eight tested metal ions. So, Hg(II) uptake was 1.82 mmol g(-1) (distribution coefficient log K(d)=5.658) at pH 1.0 or 2.0 and 1.78, 1.73, 1.48, 1.28 and 1.28 mmol g(-1) (log K(d)=4.607, 4.265, 3.634, 3.372 and 3.372), at pH 3.0, 4.0, 5.0, 6.0 and 7.0, respectively. On the other hand, the metal ions Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) showed low uptake values in range 0.009-0.720 mmol g(-1) (log K(d)<3.0) at their optimum pH values. A mechanism was suggested to explain the unique uptake of Hg(II) ions based on their binding as neutral and chloroanionic species predominate at pH values < or =3.0 of a medium rich in chloride ions. Application of the new phase for the preconcentration of ultratrace amounts of Hg(II) ions spiked natural water samples: doubly distilled water (DDW), drinking tap water (DTW) and Nile river water (NRW) using cold vapor atomic absorption spectroscopy (CV-AAS) was studied. The high recovery values obtained using AM-TSC (98.5+/-0.5, 98.0+/-0.5 and 103.0+/-1.0) for DDW, DTW and NRW samples, respectively based on excellent enrichment factor 1000, along with a good precision (R.S.D.% 0.51-0.97%, n=3) demonstrate the accuracy and validity of the new modified alumina sorbent for preconcentrating ultratrace amounts of Hg(II) with no matrix interference.  相似文献   

12.
Wang Q  Chang X  Li D  Hu Z  Li R  He Q 《Journal of hazardous materials》2011,186(2-3):1076-1081
In this work, the immobilization of 4-aminoantipyrine onto bentonite was carried out and it was then used to investigate the adsorption behavior of Cr(III), Hg(II) and Pb(II) ions from aqueous solutions. The separation and preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. Under optimum pH value (pH 4.0), the maximum static adsorption capacity of the sorbent was found to be 38.8, 52.9 and 55.5 mg g(-1) for Cr(III), Hg(II) and Pb(II), respectively. 2.0 mL of 2% thiourea in 1.0 M HCl solution effectively eluted the adsorbed metal ions. The detection limit (3σ) of this method defined by IUPAC was found to be 0.12, 0.09 and 0.23 ng mL(-1) for Cr(III), Hg(II) and Pb(II), respectively. The relative standard deviation (RSD) was lower 3.0% (n=8). The developed method has been validated by analyzing certified reference materials and successfully applied to the determination of trace Cr(III), Hg(II) and Pb(II) in water samples with satisfactory results.  相似文献   

13.
A novel fluorescent zinc sensor was designed and synthesized on ordered mesoporous silica material, MCM-41, with N-(quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide (QTEPA; 3) using a simple one-step molecular self-assembly of the silane. The solution and solid samples were characterized using solid-state nuclear magnetic resonance, transmission electron microscopy, diffuse-reflectance infrared Fourier transform, and thermogravimetric analysis techniques. The QTEPA-modified MCM-41 (4) shows 3-fold fluorescence emission enhancement and about a 55 nm red shift upon addition of 1 μM Zn(II) ions in a Tris-HCl (pH 7.22) aqueous buffer solution. The UV-vis absorption maximum is at 330 ± 5 nm, and the fluorescence emission maximum wavelength is at 468 nm, with an increase in quantum yield from 0.032 to 0.106 under the same conditions. The presence of other metal ions has no observable effect on the sensitivity and selectivity of 4. This system selectively detects Zn(II) ions with submicromolar detection to a limit of 0.1 μM. The MCM-41-based systems have the advantage that they can be employed in aqueous solutions without any aggregation.  相似文献   

14.
1-Phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione (H(2)L) was used as an effective ionophore for copper-selective poly(vinyl) chloride (PVC) membrane electrodes. Optimization of the composition of the membrane and of the conditions of the analysis was performed, and under the optimized conditions the electrode has a detection limit of 6.30×10(-7) M Cu(II) at pH 4.0 with response time 10s and displays a linear EMF versus log[Cu(2+)] response over the concentration range 2.0×10(-6) to 5.0×10(-3) M Cu(II) with a Nernstian slope of 28.80±0.11 mV/decade over the pH range of 3.0-8.0. The sensor is stable for 9 weeks and exhibits good selectivity with respect to alkali, alkali earth and transition metal ions (e.g. Na(+), K(+), Ba(2+), Ca(2+), Zn(2+), Cd(2+), Co(2+), Mn(2+), Ni(2+), Fe(2+), Al(3+)) in the 3.0-8.0 pH range. It was successfully applied for the direct determination of copper(II) in zinc, aluminum and nickel based alloys, in soils polluted by oil, and as an indicator electrode for potentiometric titration of copper ions with EDTA.  相似文献   

15.
Admicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.14-1.3 mmol of polyoxyethylene-type surfactants, including polyoxyethylene-4-tert-octylphenoxy ethers (Triton X series) and polyoxyethylene-4-isononylphenoxy ethers (PONPEs). The surfactant-coated XAD-4 was packed into a polypropylene column (7 mm i.d. x 50 mm high). A 5.0-cm(3) volume of sample solution was passed through the column at a flow rate of 0.5 cm(3) min(-1). Milligram amounts of iron(III) were effectively sorbed on the column from 8 mol dm(-3) hydrochloric acid solutions. Among the surfactants tested, polyoxyethylene(20)-4-isononylphenoxy ether (PONPE-20) showed the best performance: the iron leaked from the PONPE-20 column was 4 microg when 25 mg of iron(III) was introduced onto the column. Trace elements, such as Ti(IV), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Ag(I), Cd(II), Pb(II), and Bi(III), were not retained on the column and thus quantitatively recovered in the column effluent. The effective separation of trace elements from an iron matrix allowed their accurate determinations by inductively coupled plasma-mass spectrometry or graphite furnace atomic absorption spectrometry. The detection limits (3sigma blank) were in the nanogram per gram range. The proposed method was successfully applied to the determination of trace impurities in high-purity iron samples.  相似文献   

16.
Liquid-liquid extraction of lead(II) from succinate media was carried out with 2-octylaminopyridine (2-OAP) in chloroform. Lead(II) was quantitatively extracted with 0.036 M 2-OAP in chloroform from 0.005-0.007 M sodium succinate when equilibrated for 5 min. Lead(II) from the organic phase was stripped with three 10 mL portions of 0.4M acetic acid and determined titrimetrically with EDTA. The nature of extracted species was determined from the log-log plot. The optimum conditions have been evaluated based on a critical study of weak acid concentration, extractant concentration, period of equilibration and effect of diluents. The metal loading capacity of the reagent was found to be 8 mg of lead(II) with 10 mL 0.036 M of the extractant. The extraction of the lead(II) was carried out in presence of various ions to ascertain the tolerance limit of individual. Temperature dependence of the extraction equilibrium constants was examined to estimate the apparent thermodynamic functions (Delta H, DeltaS and Delta G) for extraction reaction. Lead(II) was successfully separated from commonly associated metal ions such as Bi(III), Hg(II), Cr(VI), Cd(II), Zn(II), Al(III), Ca(II), Ba(II) and from binary and ternary mixtures. The method was extended for determination of lead(II) in real samples.  相似文献   

17.
A separation-preconcentration procedure based on the coprecipitation of lead(II) and chromium(III) ions with copper(II)-5-chloro-2-hydroxyaniline system has been developed. Effects of pH, sample volume and interferences on the recovery of the metal ions were investigated. The detection limits corresponding to three times the standard deviation of the blank were found to be 2.72 microg L(-1) for lead and 1.20 microg L(-1) for chromium. The preconcentration factor is 50. The effectiveness of the present method was assessed by determining analyte metals in GBW 07309 stream sediment and NIST SRM 1633b coal fly ash certified reference materials. The method was successfully applied to the determination of trace lead and chromium in environmental samples.  相似文献   

18.
A procedure for the determination of trace amounts of Pb(II), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) is described, that combines atomic absorption spectrometry-dysprosium hydroxide coprecipitation. The influences of analytical parameters including amount of dysprosium(III), centrifugation time, sample volume, etc. were investigated on the recoveries of analyte ions. The effects of concomitant ions were also examined. The recoveries of the analyte ions were in the range of 95.00-104.00%. The detection limits corresponding to three times the standard deviation of the blank for the analytes were in the range of 14.1-25.3 microg/L. The method was applied to the determination of lead, copper, nickel, cobalt, cadmium and manganese ions in natural waters and table salts good results were obtained (relative standard deviations <10%, recoveries >95%).  相似文献   

19.
The immobilized single-stranded DNA (ssIDNA) has been found to be a very effective biospecific analytical reagent when used in a newly developed bioaffinity method of the determination of heavy metals based on the amperometric DNA-based biosensor. This has been concluded from the comparative study of the complexing of heavy metals with double-stranded DNA, single-stranded DNA, and ssIDNA, using Fe(III) and Cu(II) as a model (metal/nucleotide ratio and stability constants are maximum for ssIDNA), from the study of adsorption of Fe(III), Cu(II), Pb(II), and Cd(II) on nitrocellulose membranes, containing single-stranded DNA, and from the determination of their binding constants with ssIDNA. According to these data, the chosen heavy metals can be lined up in a series of binding strengths with ssIDNA: Cu(II) > Pb(II) > Fe(III) > Cd(II). The method of the determination of heavy metals is based on biospecific preconcentration of metal ions on the biosensor followed by the destruction of DNA-metal complexes with ethylenediaminetetraacetate and voltammogram recording has been proposed. The lower detection limits are 4.0 x 10(-11), 1.0 x 10(-10), 1.0 x 10(-9), and 5.0 x 10(-9) M for Cu(II), Pb(II), Cd(II), and Fe(III), respectively. The heavy metals have been assayed in multicomponent environmental and biological systems such as natural and drinking water, milk, and blood serum samples.  相似文献   

20.
A method has been developed for the speciation of trace dissolved Fe(II) and Fe(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry (ICPMS). Selective determination of Fe(III) in the presence of Fe(II) was made possible by on-line formation and sorption of the Fe(III)-pyrrolidinecarbodithioate (PDC) complex in a PTFE knotted reactor over a sample acidity range of 0.07-0.4 mol L(-1) HCl, elution with 1 mol L(-1) HNO3, and detection by ICPMS. Over a sample acidity range of 0.001-0.004 mol L(-1) HCl, the sum of Fe(III) and Fe(II), i.e., Fe(III + II), could be determined without the need for preoxidation of Fe(II) to Fe(III). The concentration of Fe(II) was obtained as the difference between those of Fe(III + II) and Fe(III). With a sample flow rate of 5 mL min(-1) and a 30-s preconcentration time, an enhancement factor of 12, a retention efficiency of 80%, and a detection limit (3s) of 0.08 microg L(-1) were obtained at a sampling frequency of 21 samples h(-1). The relative standard deviation (n = 11) was 2.9% at the 10 microg L(-1) Fe(III) level. Recoveries of spiked Fe(III) and Fe(II) in local tap water, river water, and groundwater samples ranged from 95% to 103%. The concentrations of Fe(III) and Fe(II) in synthetic aqueous mixtures obtained by the proposed method were in good agreement with the spiked values. The result for total iron concentration in the river water reference material SLRS-3 was in good agreement with the certified value. The method was successfully applied to the determination of trace dissolved Fe(III) and Fe(II) in local tap water, river water, and groundwater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号