首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

2.
Previous results from our laboratory suggest that long-term treatment of primary cultured bovine adrenal medullary (BAM) chromaffin cells with nicotine or phorbol 12-myristate 13-acetate, either of which directly activates protein kinase C (PKC), increases the mRNA levels encoding catecholamine-synthesizing enzymes and proenkephalin. In the present study, we have examined the effects of nicotine on BAM cell PKC activity with special emphasis on long-term effects. Nicotine increased particulate PKC activity in a concentration-dependent manner when measured using in vitro enzyme assay with histone as the substrate. This effect is mediated through nicotinic cholinergic receptors, because 1,1-dimethylphenylpiperazinium, a nicotinic agonist, had a similar effect. In addition, chlorisondamine, a specific nicotine-receptor blocking drug, antagonized the effect of nicotine. Nicotine also increased specific [3H]phorbol 12,13-dibutyrate ([3H]PdBu) binding within 1 min, the effect of which was maximal between 3 and 12 min. This effect was reversed by chlorisondamine similarly after 12 min and after 18 h of nicotine treatment, indicating that continual nicotinic-receptor occupancy is required for persistent PKC activation. Compared to PKC activation, the onset of nicotine-stimulated diacylglycerol production was slow, and it was observed after 12 min of incubation with nicotine. The diacylglycerol levels, specific [3H]PdBu binding, and PKC activity remained significantly elevated for at least 18 h with continuous nicotine incubation. Furthermore, nicotine increased the PKC immunoreactivity of a particulate protein with a molecular mass of 82 kDa in the western blot. These results suggest that nicotinic-receptor activation increases PKC activity and immunoreactivity in BAM cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

4.
Protein phosphorylation and protein kinase C (PKC) levels were analyzed in intact cultures of spontaneously transformed, chemically transformed, and untransformed mouse pulmonary epithelial cell lines. It was found that although the transformed cell lines contained about 80% less protein kinase C, measured as total enzyme activity or binding of [3H]phorbol ester, phosphorylation events after phorbol ester treatment could still be easily detected. A commonly described Mr 80-kDa protein kinase C substrate (p80, 80 K, MARKS) was identified using 2D-PAGE, following phosphorylation in intact cells, and found to have reduced availability for phosphorylation in the transformed cell lines C4SE9, C1SA5 and NULB5 in comparison to the untransformed C4E10 and C1C10. Available levels of p80 were further analyzed in heat-denatured extracts from all cell lines using partially purified bovine brain PKC and correlated well with changes seen in intact cells. It was also noted that all transformed cell lines contained large amounts of a family of phosphoproteins of Mr 55-65 kDa, that could not be detected in the untransformed cell lines and whose phosphorylation state was increased by protein kinase C activation. This protein was found to be located in the nucleus. Hence, spontaneously and chemically transformed mouse pulmonary epithelial cells exhibit reduced levels of PKC, along with an altered pattern of PKC-mediated phosphorylation.  相似文献   

5.
Inhibitory effect of IFN-tau on phorbol ester (PdBu)-induced PGF2alpha secretion was hypothesized to be manifested by the regulation of protein kinase C (PKC) in bovine endometrial (BEND) cells. Following 12 h stimulation with PdBu, cells were unresponsive to freshly added PdBu. Pretreatment of cells with a PKC inhibitor abolished PGF2alpha secretion in response to PdBu. Therefore, PdBu induction of PGF2alpha secretion is through activation of PKC. The alpha, epsilon, iota and lambda isotypes of the PKC family were identified by Western blotting. Cells were then treated with medium alone (control), PdBu or PdBu + IFN-tau for 3 or 6 h. The PdBu-induced secretion of PGF2alpha was suppressed by IFN-tau. At 3 and 6 h, PKCalpha and PKCepsilon were detected both in the cytosolic and membrane fractions of unstimulated cells. There was a clear reduction of PKCalpha in the cytoplasm induced by PdBu and PdBu + IFN-tau at 3 and 6 h. The total abundance (cytoplasm and membrane fractions) of PKCalpha was lower in the PdBu + IFN-tau than PdBu alone. These temporal responses indicate a PKCalpha responsiveness of BEND cells to PdBu and PDBu + INF-tau with some evidence that IFN-tau causes a slight but detectable reduction in PKCalpha when added with PdBu. However, IFN-tau-induced decrease in the total abundance of PKCalpha was not enough to affect negatively the translocation of the PKCalpha to the membrane. Therefore, IFN-tau's ability to suppress secretion of PGF2alpha is unlikely due to an interference with the PdBu-induced activity of PKC.  相似文献   

6.
We determined whether the beta or gamma protein kinase C (PKC) subtypes implicated in long-term potentiation (LTP) selectively regulates protein F1 phosphorylation. Purified bovine PKC subtypes and recombinant PKC subtypes activated by phosphatidylserine (PS) and calcium were tested for their relative ability to phosphorylate purified rat protein F1 (a.k.a. GAP-43). After equalizing enzyme activity against histone, the recombinant beta II PKC phosphorylated protein F1 to a 6 fold greater extent than the recombinant gamma PKC. Bovine beta I PKC phosphorylated protein F1 to a 3 fold greater extent than bovine gamma PKC. Even when PS was replaced by lipoxin B4, which can selectively increase gamma PKC activity, beta I PKC was still superior to gamma PKC in phosphorylating protein F1. Taken together with previous cellular studies of brain showing parallel levels of expression of beta PKC mRNA and protein F1 mRNA, the present results make it attractive to propose that beta PKC regulates protein F1 phosphorylation during the development of synaptic plasticity.  相似文献   

7.
A recently cloned mouse cDNA designated F52 encodes a putative protein with striking sequence similarity to the MARCKS protein, a major cellular substrate for protein kinase C (PKC). Major regions of sequence similarity include the amino-terminal myristoylation consensus sequence and the central calmodulin-binding/PKC phosphorylation site domain. The F52 protein was expressed in Escherichia coli with apparent M(r) 50,000; it was a substrate for PKC and comigrated on two-dimensional electrophoresis with a myristoylated protein whose phosphorylation was stimulated by phorbol 12-myristate 13-acetate in mouse neuroblastoma cells. The F52 protein also was myristoylated in E. coli by co-expression with N-myristoyltransferase. A 24-amino acid peptide derived from the protein's phosphorylation site domain was a good substrate for PKC; like the cognate MARCKS peptide, it was phosphorylated with high affinity (S0.5 = 173 nM) and positive cooperativity (KH = 5.4). The F52 peptide also bound calmodulin with high affinity (Kd = less than 3 nM); this binding could be disrupted by phosphorylation of the peptide with PKC, with a half-time of 8 min. The F52 protein is clearly a member of the MARCKS family as defined by primary sequence; in addition, the two proteins share several key attributes that may be functionally important.  相似文献   

8.
Several extracellular proteins have been reported to be phosphorylated. Previous studies of our laboratory indicated that laminin-1 can be phosphorylated by protein kinase A (PKA). Moreover, it has been reported that protein kinase C (PKC), although known to be intracellular, can phosphorylate extracellular proteins in the case of cellular damage and/or platelet activation. In the present study we examined the possibility of laminin-1 serving as a substrate of PKC. Amino acid analysis revealed that laminin-1 is phosphorylated by this enzyme on serine residues. Self assembly, heparin binding, and cell attachment on the phosphorylated molecule were then studied. Phosphorylated laminin-1 showed an increased and more rapid self assembly than the non-phosphorylated molecule. Heparin binding and cell attachment experiments indicated enhanced heparin and cell binding capacity of the phosphorylated molecule in comparison to the non- phosphorylated control. These results indicate that laminin-1 can be phosphorylated by protein kinase C. Furthermore, phosphorylation by protein kinase C seems to alter several properties of the molecule, though, the in vivo significance of this phenomenon remains to be studied.  相似文献   

9.
10.
We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.  相似文献   

11.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   

12.
Neurogranin (Ng) is a brain-specific, postsynaptically located protein kinase C (PKC) substrate, highly expressed in the cortex, hippocampus, striatum, and amygdala. This protein is a Ca(2+)-sensitive calmodulin (CaM)-binding protein whose CaM-binding affinity is modulated by phosphorylation and oxidation. To investigate the role of Ng in neural function, a strain of Ng knockout mouse (KO) was generated. Previously we reported (Pak, J. H., Huang, F. L., Li, J., Balschun, D., Reymann, K. G., Chiang, C., Westphal, H., and Huang, K.-P. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11232-11237) that these KO mice displayed no obvious neuroanatomical abnormality, but exhibited deficits in learning and memory and activation of Ca(2+)/CaM-dependent protein kinase II. In this report, we analyzed several downstream phosphorylation targets in phorbol 12-myristate 13-acetate- and forskolin-treated hippocampal slices from wild type (WT) and KO mice. Phorbol 12-myristate 13-acetate caused phosphorylation of Ng in WT mice and promoted the translocation of PKC from the cytosolic to the particulate fractions of both the WT and KO mice, albeit to a lesser extent in the latter. Phosphorylation of downstream targets, including mitogen-activated protein kinases, 90-kDa ribosomal S6 kinase, and the cAMP response element binding protein (CREB) was significantly attenuated in KO mice. Stimulation of hippocampal slices with forskolin also caused greater stimulation of protein kinase A (PKA) in the WT as compared with those of the KO mice. Again, phosphorylation of the downstream targets of PKA was attenuated in the KO mice. These results suggest that Ng plays a pivotal role in regulating both PKC- and PKA-mediated signaling pathways, and that the deficits in learning and memory of spatial tasks detected in the KO mice may be the result of defects in the signaling pathways leading to the phosphorylation of CREB.  相似文献   

13.
We investigated the regulation of Hsp27 phosphorylation by protein kinase C δ (PKCδ) during etoposide-induced apoptosis. The phosphorylation of Hsp27 at Ser78 was temporally correlated with the proteolytic activation of PKCδ during apoptosis. Hsp27 phosphorylation was dependent on the activity of PKCδ since treatment with rottlerin, a chemical inhibitor of PKCδ, or overexpression of a PKCδ dominant negative mutant abolished the phosphorylation. In addition, recombinant PKCδ phosphorylated Hsp27 at Ser78 in vitro. Moreover, caspase-3 was specifically activated following Hsp27 phosphorylation at Ser78. Pull-down assays using a phosphomimetic Hsp27 mutant revealed that binding between Hsp27 and cytochrome c was abolished by the phosphorylation. These results suggest that Hsp27 dissociates from cytochrome c following PKCδ-mediated phosphorylation at Ser78, which allows formation of the apoptosome and stimulates apoptotic progression.  相似文献   

14.
15.
Recently, the amino acid sequence of a 12 Kd endogenous protein inhibitor of protein kinase C (PKC-I 2) has been shown to be identical to that of the 12 KDa receptor for the immunosuppressive drug, FK-506. In view of this observation we examined the effects of recombinant and native human FKBP on protein kinase C (PKC) activity. FKBP, at molar concentrations up to 1900-fold over that of PKC, failed to inhibit PKC phosphorylation of histone H1 and failed to block the auto-phosphorylation of PKC. Interestingly, FKBP is phosphorylated by PKC in these reactions. The phosphorylation of FKBP by PKC appears to be specific since the catalytic subunit of cAMP-dependent protein kinase fails to phosphorylate the binding protein. Our results fail to support a role for FKBP as an inhibitor of protein kinase C.  相似文献   

16.
UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase) is the key enzyme in the de novo synthesis pathway of neuraminic acid, which is widely expressed as a terminal carbohydrate residue on glycoconjugates. UDP-GlcNAc 2-epimerase is a bifunctional enzyme and catalyzes the first two steps of neuraminic acid synthesis in the cytosol, the conversion of UDP-N-acetylglucosamine to ManAc and the phosphorylation to ManAc-6-phosphate. So far, regulation of this essential enzyme by posttranslational modification has not been shown. Since UDP-N-acetylglucosamine is a cytosolic protein containing eight conserved motifs for protein kinase C (PKC), we investigated whether its enzymatic activity might be regulated by phosphorylation by PKC. We showed that UDP-GlcNAc 2-epimerase interacts with several isoforms of PKC in mouse liver and is phosphorylated in vivo. Furthermore, PKC phosphorylates UDP-GlcNAc 2-epimerase and this phosphorylation results in an upregulation of the UDP-GlcNAc 2-epimerase enzyme activity.  相似文献   

17.
Muscarinic cholinergic receptors (mAChR) purified from chick heart were phosphorylated by protein kinase C (PKC) and reconstituted with the purified GTP-binding regulatory protein Go. The effects of PKC phosphorylation on the interaction of mAChR with Go were assessed by monitoring for agonist-stimulated guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) binding to Go, agonist-stimulated GTPase activity of Go, and the capability of Go to induce high affinity agonist binding to mAChR. Both the receptor-stimulated GTP gamma S binding and GTPase activity of Go were markedly diminished as a result of PKC-mediated phosphorylation of the mAChR, whereas the ability of Go to induce high affinity agonist binding to the receptors was unaffected. When mAChR were first reconstituted with Go and then subjected to phosphorylation with PKC, a complete inhibition of the phosphorylation of mAChR by PKC was observed. The inhibitory effect of Go on mAChR phosphorylation was concentration-dependent and was prevented by the presence of GTP gamma S in the reaction mixtures. Taken together, these results indicate that the phosphorylation of mAChR by PKC modulates receptor/G-protein interactions and that the ability of the receptors to act as substrates for PKC may be regulated by receptor/G-protein interactions.  相似文献   

18.
The protein-tyrosine kinase (PTK) v-Fps induces protein kinase C (PKC)-dependent expression of the transformation-related 9E3 gene in chicken embryo fibroblasts (Spangler, R., Joseph, C., Qureshi, S.A., Berg, K., and Foster, D.A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7017-7021). We present evidence here that a GTP-binding protein (G-protein) is a component of this PKC-dependent signaling pathway. 1) A GTP analogue that stimulates G-protein-mediated signals induced 9E3 gene expression. 2) A GDP analogue that inhibits signaling through G-proteins inhibited expression of 9E3 and phosphorylation of a 67-kDa PKC substrate induced by v-Fps. The GDP analogue had no effect on phosphorylation of the PKC substrate or the expression of 9E3 induced by direct activation of PKC with phorbol ester. 3) Increased v-Fps PTK activity led to increased GTP binding to a 50-kDa protein. The molecular weight of this GTP-binding protein is consistent with the molecular weight of alpha-subunits of G-proteins of the heterotrimeric class. The data suggest that a G-protein functions upstream from PKC in a signaling pathway that connects v-Fps PTK activity to increased 9E3 gene expression.  相似文献   

19.
Protein kinase C (PKC) is a novel PKC that plays a key role in T lymphocyte activation. PKC has been shown to be specifically recruited to the immunological synapse in response to T cell receptor activation. To understand the basis of its unique subcellular localization properties, we investigated the mechanism of in vitro and cellular sn-1,2-diacylglycerol (DAG)-mediated membrane binding of PKC. PKC showed phosphatidylserine selectivity in membrane binding and kinase action, which contributes to its translocation to the phosphatidylserine-rich plasma membrane in HEK293 cells. Unlike any other PKCs characterized so far, the isolated C1B domain of PKC had much higher affinity for DAG-containing membranes than the C1A domain. Also, the mutational analysis indicates that the C1B domain plays a predominant role in the DAG-induced membrane binding and activation of PKC. Furthermore, the Ca(2+)-independent C2 domain of PKC has significant affinity for anionic membranes, and the truncation of the C2 domain greatly enhanced the membrane affinity and enzyme activity of PKC. In addition, membrane binding properties of Y90E and Y90F mutants indicate that phosphorylation of Tyr(90) of the C2 domain enhances the affinity of PKC for model and cell membranes. Collectively, these results show that PKC has a unique membrane binding and activation mechanism that may account for its subcellular targeting properties.  相似文献   

20.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号