共查询到20条相似文献,搜索用时 69 毫秒
1.
肺结节是肺癌在早期阶段的表现形式. 利用计算机辅助诊断(Computer-aided diagnosis, CAD)技术对血管粘连型肺结节和磨玻璃型肺结节进行检测, 需要对这两类肺结节进行准确的分割. 目前基于传统活动轮廓模型的肺结节分割算法, 存在边界泄露现象. 对此, 本文提出一种基于模糊速度函数的活动轮廓模型的肺结节分割算法. 首先, 采用结合灰度特征和局部形态特征的模糊聚类算法, 计算模糊速度函数中的模糊隶属度; 其次, 将模糊速度函数引入到活动轮廓模型中, 在肺结节的边界处, 该速度函数为零, 轮廓曲线停止演变, 从而完成肺结节的分割. 实验结果表明, 本文提出的算法可以精确地分割血管粘连肺结节和磨玻璃型肺结节. 相似文献
2.
目的 针对传统模板匹配方法检测肺结节存在的问题,提出一种用于CT图像中检测肺结节的3维自适应模板匹配算法。方法 首先,从CT序列图像中分割出3维肺实质,采用Canny算子等方法从分割出的3维肺实质中提取3维感兴趣区域作为候选肺结节;然后,确定每个3维感兴趣区域的主方向和中心层,并以此中心层作为信息层,沿主方向对信息层进行3维扩展生成3维模板;最后,对自适应模板和候选结节的3维归一化互相关(NCC)相关系数进行计算,将相似性高于设定阈值的区域标记为肺结节。结果 采用66个临床CT病例对本文方法进行了肺结节检测实验,结果显示本文方法对肺结节检测的敏感率为95.29%,假阳性为12.90%。结论 本文方法对检测肺结节具有较高的敏感率和准确率,可在临床上有效辅助放射科医生对肺结节进行检测,从而提高放射科医生检测肺结节的准确性和工作效率。 相似文献
3.
目的 传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法 利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果 对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1.5 dB,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论 通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。 相似文献
4.
一种改进的模糊聚类图像分割算法研究与仿真 总被引:3,自引:0,他引:3
针对相似图像分割过程中,输入像素数据在转换空间上存在的不连贯和幅度变化特征差异很小,像素的隶属关系很难准确界定,导致分割阀值设定过程出现较大衰减,分割误差较大的问题,提出一种改进的模糊聚类图像分割算法.分析了传统的模糊C-均值聚类图像分割算法的弊端,对像素模糊划分矩阵和聚类中心进行推导,将迭代过程中像素数据集对聚类隶属的可能性和不确定性关系融入分割目标函数中,依据可能隶属度和不确定隶属度建立改进分割准则函数,同时对像素聚类进行更新,实现图像分割.仿真结果验证了所提算法的有效性,结果表明,改进后的方法在分割检测过程中,图像误差明显减小. 相似文献
5.
目的 由于肺部CT图像中各组织结构复杂、灰度分布不均匀,造成肺实质部分难以准确分割和提取。为了提高肺实质分割的准确率,本文提出了一种基于超像素的细化分割与模糊C均值聚类相结合的自动分割算法。方法 该算法充分利用肺部CT图像的灰度、纹理特征,同时为了正确标记超像素的分类,引入一种空间邻域信息来增强空间约束进而有效地解决灰度不均匀的问题,它能够对肺实质进行分割并除去其周围的主血管,然后利用形态学知识去除肺部的分支血管。结果 在临床患有四类疾病的患者CT图像数据集上采用改进的图像特征,使得肺实质分割的准确率提高了0.8%。同时,算法准确率提高到99.46%。结论 实验结果表明,本文算法能够实现肺部CT图像肺实质的自动细化分割,结果准确适用。该算法鲁棒性好、速度快,是一种精确有效的自动肺实质分割方法。 相似文献
6.
模糊C均值聚类算法(FCM)是一种应用非常广泛的聚类算法,但是它受初始聚类中心影响较大,容易陷入局部最优。 在标准布谷鸟算法(CS)的基础上 提出改进布谷鸟优化算法(ICS),将发现概率P由固定值转变成随迭代次数逐渐减小的变量,这样不仅可以提高搜索种群的质量,而且保证了算法的收敛。因此,可以将改进布谷鸟优化算法用于FCM算法聚类中心生成的过程(ICS_FCM),从而有效地避免FCM陷入局部最优。改进的算法具有良好的聚类效果和运行速度。实现基于改进布谷鸟优化的FCM图像分割,并与基于模拟退火的FCM算法(SA_FCM)进行对比。由实验结果可知,该算法(ICS_FCM)不仅取得了较好的分割效果,效率上也有明显的提高。 相似文献
7.
8.
模糊C均值(FCM)聚类算法用于图像分割具有简单直观、易于实现的特点,但是存在计算量大、运算速度慢、抗噪能力差等问题,为解决上述问题提出了一种改进的快速FCM算法(FFCM),方法将空间信息融入到标准FCM算法中,将图像从像素空间映射到其厌度直方图特征空间,实现了快速聚类,然后在快速聚类的基础上,充分利用像素的邻域特性,依据最大隶属度原则,划分图像像素的类别归属,对隶属度函数做一定改进.实验结果表明,既能快速有效地分割图像,又具有较好地抗噪能力. 相似文献
9.
本文分析了模糊聚类在图像分割领域的应用,介绍了模糊集和聚类分析的作用,最后引出了模糊C均值聚类图像分割算法。 相似文献
10.
用于图像分割的粗糙集改进模糊聚类方法 总被引:2,自引:0,他引:2
采用一种新的基于粗糙集理论的图像分割算法。通过提取直方图的外层,以及计算像素点周围的局部模糊程度来更新粗糙度。使用局部模糊粗糙度和待定算子来更新FCM算法中的隶属度函数。从粗糙集理论意义上来说,直方图的外层与上近似有关,而直方图取值与下近似有关。该方法通过对比传统的聚类分割算法和刘华军的改进算法,大大降低了时间复杂度,聚类效果显著。实验证明,该方法收敛性较强,运行时间较短,且具有良好的分割效果。 相似文献
11.
可能性C均值聚类算法(PCM)对于噪声显示了良好的鲁棒性,但是它没有考虑到像素的空间信息,在含有大量噪声的情况下,PCM算法的分割性能会大大降低。基于PCM算法,提出了一种改进的PCM算法,该算法改进了隶属度函数,新的像素点隶属度更新为其邻域隶属度的几何均值。实验结果显示新的算法能够更有效的分割图像,并显示出良好的抗噪能力。 相似文献
12.
13.
据统计,肺癌在全世界范围内是发病率、致死率最高的疾病之一。随着计算机辅助诊断系统(CAD)和卷积神经网络(CNN)的成熟化,医疗领域的诊断治疗也逐渐智能化。本文提出一种基于目标检测算法的肺结节自动检测方法,并提出一套将阈值分割算法和数字形态学处理相结合的肺实质CT影像处理流程。对LUNA16数据集中的1186个肺结节进行训练和学习,观察YOLO V3模型在数据集中的评价结果来验证模型,实验结果准确率达到92.18%,每张图片平均检测时间为0.035 s。与现有的肺结节检测算法SSD、CNN、U-Net等模型进行对比试验,以验证YOLO V3模型的有效性。同时本文基于CAD技术设计肺结节辅助诊断系统,实现人机交互,为医生提供简单明了的辅助诊断工具。 相似文献
14.
传统的FCM(fuzzy c-means)算法可以准确的分割多数无噪声图像,但对噪声图像非常敏感.针对于此类问题,提出了一种基于形态学重建的改进FCM算法.首先利用形态学闭合重建算子对含噪图像进行光滑化.然后利用基于邻域信息的改进FCM算法对合成图像及医学图像进行分割处理,最终得出了更加精确的分割结果.通过与其它两类算... 相似文献
15.
三维CAD内核支撑大型工业软件的开发与应用,开放的三维CAD内核架构便于更多角色参与到CAD内核优化、系统开发以及深层次应用中.围绕三维CAD内核开放架构,文中在剖析主流三维CAD内核的基础上,提出了一种支持多角色协同参与研发的CAD内核开放架构,包括几何表示、拓扑表示、离散化、可视化等模块;讨论了开放架构的主要功能模块设计、功能模块间互操作以及基于内核的CAD应用快速开发等关键问题;通过基于开放架构扩展开发管线CAD桌面应用,对开放架构的可用性进行了验证. 相似文献
16.
基于混合聚类算法的图像分割 总被引:1,自引:0,他引:1
本文将像素空间中的图像分割问题转化为特征空间中的数据聚类问题处理,并设计了一种基于遗传算法和模糊c均值算法的混合聚类算法,实现图像分割。实验表明,使用该算法能取得较好的图像分割效果。 相似文献
17.
结合[k]-means的自动FCM图像分割方法 总被引:1,自引:0,他引:1
针对图像分割中模糊C均值算法(FCM)无法自动确定聚类中心,不考虑像素邻域信息的问题,提出一种结合[k]-means的自动FCM图像分割方法。该方法先由图像的灰度直方图确定聚类数目,使用一种改进的快速FCM方法产生初始聚类中心。即通过一步[k]-means算法对大隶属度灰度更新模糊聚类中心,同时仅对小隶属度灰度使用快速FCM?方法进行隶属度更新,迭代后得到初始聚类中心。利用改进隶属度的FCM算法进行最终聚类。实验表明,该方法获取初始聚类中心接近最终值,加速图像分割,并对噪声具有一定的鲁棒性。 相似文献
18.
19.
提出一种融合纹理特征的两阶段聚类分割算法。首先,选择纹理特征、差分均值和颜色分量这3个特征,组成一个分割所用的特征矢量;然后,使用直方图对特征矢量进行初始聚类中心和类别数的估算;最后,通过模糊C均值算法对特征矢量进行聚类。该算法有效地克服了模糊C均值(FCM)容易陷入局部最优的缺陷,使聚类结果更加精确。实验结果表明该方法比一些现存方法的分割效果要好。 相似文献