首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Structure optimization of organic light-emitting devices   总被引:1,自引:0,他引:1  
A triple layer organic light-emitting diode (OLED) with two heterostructure of indium-tin oxide (ITO)/N,N’-diphenyl-N, N’-bis(1-naphthyl) (1,1’-biphenyl)-4,4’-diamine (NPB)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/ 8-Hydrox- yquinoline aluminum (Alq3)/Mg:Ag has been fabricated by using the vacuum deposition method. The influence of different film thickness of BCP layer on the performance of the OLEDs has been investigated. The results show that when the thickness of the BCP layer film gradually r...  相似文献   

2.
Based on conventional double layer device, triple layer organic light-emitting diodes (OLEDs) with two heterostructures of indium-tin oxide (ITO)/N,N'-diphenyl-N,N'-bis(1-naphthyl)(1,1 '-biphenyl)-4,4'-diamine(NPB)/2,9-dimethyl-4,7-diphenyl- 1,10-phenanthroline (BCP)/8-Hydroxyquinoline aluminum (Alq3)/Mg:Ag USing vacuum deposition method have been fabricated. The influence of different film thickness of BCP layer on the performance of OLEDs has been investigated. The results showed that when the thickness of the BCP layer film gradually varied from 0.1 nm to 4.0 nm, the electroluminescence (EL) spectra of the OLEDs shifted from green to greenish-blue to blue, and the BCP layer acted as the recombination region of charge carriers related to EL spectrum, enhancing the brightness and power efficiency. The power efficiency of OLEDs reached as high as 7.3 lm/W.  相似文献   

3.
Multicolor-emitting organic electroluminescent (EL) diodes have been realized utilizing a vapor-deposited multilayer structure. Two types of layer structure have been employed to realize multicolor emission. One type has a three-layer structure (Type I) to emit two different colors; the other type has five layers (Type II) to emit three different colors. The Type I devices contain 1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene (PPCP), 8-hydroxyquinoline aluminum (Alq3), or N,N'-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylene dicarboximide (BPPC) as blue, green, or red light-emitting layers, respectively, and N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as carrier blocking layer. The emission colors are changed by applying opposite polarity of electric field in the Type I devices, and, in the Type II devices, by applying different strength and polarity of electric field. The mechanism of the emission color change is discussed by the carrier injection mechanism and recombination process in the multilayer devices  相似文献   

4.
The luminous efficiency of organic light-emitting devices depends on the recombination probability of electrons injected at the cathode and holes at the anode. A theoretical model to calculate the distribution of current densities and the recombination rate in organic single layer devices is presented taking into account the charge injection process at each electrode, charge transport and recombination in organic layer. The calculated results indicate that efficient single-layer devices are possible by adjusting the barrier heights at two electrodes and the carrier mobilities. Lowering the barrier heights can improve the electroluminescent(EL) efficiency pronouncedly in many cases, and efficient devices are still possible using an ohmic contact to inject the low mobility carrier, and a contact limited contact to inject the high mobility carrier. All in all, high EL efficiency needs to consider sufficient recombination, enough injected carriers and well transport.  相似文献   

5.
通过多源有机分子气相沉积系统(LN-386SA)制备结构为ITO/HAT-CN/TPD/TPD:PO-T2T/PO-T2T(x=10,20,30,40,50,60,70 nm)/LiF/Al的有机发光器件,研究了电子传输层(PO-T2T)厚度对TPD:PO-T2T黄光激基复合物发光性能的影响。PO-T2T厚度对其电致发光(electroluminescence, EL)光谱几乎没有影响,但对电流密度(current density, CD)、亮度、效率等性能有较大影响。由于金属铝扩散至发光层中会形成淬灭中心降低发光效率,当PO-T2T越厚时,扩散至发光层的铝原子越少,因此发光效率随PO-T2T厚度增加而增加。当PO-T2T厚度为70 nm时,获得最大电流效率(current efficiency, CE)和功率效率(power efficiency, PE),分别为2.16 cd/A、2.12 lm/W。此外,瞬态EL性能表明TPD:PO-T2T的发光来自TPD和PO-T2T分别对载流子的直接捕获,没有发光瞬时过冲或者深陷阱中载流子逃逸复合发光的现象。  相似文献   

6.
We report on an alternating current (AC) field induced organic electroluminescence (EL) device with internal charge carrier generation and recombination luminance of over 5000 cd m?2 under AC drive without charge carrier injection from external electrodes. The ultra-bright AC-EL is attributed to an optical optimization performed on the devices via numerical optical simulations based on an optical thin film model as well as an increase in the number of charge carriers achieved via the concept of molecular doping within the device. The luminance levels achieved are highest reported so far in literature for AC organic light emitting devices.  相似文献   

7.
利用有机覆盖层提高OLED出光效率   总被引:2,自引:2,他引:0  
将Alq作为覆盖层真空蒸镀到玻璃基板后制作底发射有机电致发光器件(OLED),所制备的器件结构为:Glass/Alq(xnm)/Al(15nm)/MoO3(30nm)/NPB(60nm)/Alq(65nm)/LiF(1nm)/Al(150nm)。通过研究器件光辐射特性曲线,可以看出覆盖层厚度的变化引起光的干涉效应的变化是导致电致发光变化的原因,广角干涉和多光束干涉之间的相互作用可以通过覆盖层的厚度来调节,并且半透明的Al膜做阳极,将覆盖层蒸镀到阳极之外玻璃基板上,半透明的铝膜和覆盖层与阴极组成微腔器件,通过改变覆盖层的厚度调节微腔的腔长,使OLED电致发光光谱的中心波长发生红移。  相似文献   

8.
锁钒  于军胜  黎威志  邓静  林慧  蒋亚东 《电子学报》2007,35(11):2050-2054
研究了以NPB为空穴传输层、Alq3为发光层的双层异质结有机电致发光器件的薄膜厚度对器件性能的影响.制备了一系列具有不同NPB和Alq3厚度的器件并测试了其电致发光特性.结果表明,器件电流随Alq3与NPB厚度变化的关系并不相同.不同有机层厚度双层器件的电流机制符合陷阱电荷限制(TCL)理论,随外加电压的增大,器件电流经历了欧姆电导区、TCL电流区、陷阱电荷限制-空间电荷限制(TCL-SCL)过渡区三个区域的变化.当有机层厚度匹配为NPB(20nm)/Alq3(50nm)时可以获得性能优良的器件.器件的流明效率-电压关系曲线的变化规律是在低电压区较快达到最大值,然后随电压的增加逐渐降低.  相似文献   

9.
《Organic Electronics》2007,8(5):529-534
A novel red–orange emitting material with a branched molecular structure, 2,4,6-tris[2-(N-ethyl-3-carbazole)carboxethenyl]-1,3,5-s-triazine (TC3), has been synthesized and characterized using UV–visible, photoluminescence (PL) and electroluminescence (EL) spectroscopy. White EL devices were fabricated using TC3 as a red–orange emitter and 8-hydroxyquinolinolato lithium (Liq) as a blue–green emitter. N,N-bis(3-methylphenyl)-N,N-diphenylbenzidine (TPD) as the adjustor for charge carrier mobility was introduced between the two emitting layers to improve the stability of the white emission color on bias voltage. The EL devices of ITO/poly(N-vinylcarbazole) (PVK):TC3 (56 nm)/TPD (5 nm)/Liq (30 nm)/Mg:Ag exhibited good quality white emission. The Commission Internationale De L’Eclairage chromaticity coordinates are (0.34, 0.39) and are stable on the bias voltage.  相似文献   

10.
We report a new approach of improving the solar cells efficiency based on ultrathin perovskite films. We propose the addition of CuPc compound to perovskite active layer for enhanced charge generation and transfer process by charge transfer process between CuPc and perovskite. The performance of the devices with and without addition of CuPc was studied in respect to thickness of the active layer. The thickness was varied by the change of the spin coating speed in the range of 4000, 7000 and 10000 rpm, different concentration of CuPc also been studied. The process of charge carrier recombination, crystallinity and Raman characteristics of the obtained films was studied. The perovskite device with an active layer of MAPbI3 mixed with CuPc spin coated with the speed of 10000 rpm with thickness of about 150 nm demonstrated the efficiency of 12.7%. The ultrathin mixed perovskite film (10000 rpm perovskite film of 15% CuPc) based device presents 33% thickness and 85% efficiency of common pure perovskite device (4000 rpm pure perovskite film).  相似文献   

11.
单层有机电致发光器件的电流 传导机制的数值拟合分析   总被引:1,自引:0,他引:1  
采用真空蒸镀的方法制备了以八羟基喹啉铝(Alq3)为功能层的单层同质结有机电致发光器件,器件结构为indium-tin-oxide(ITO)/tris-(8-hydroxylquinoline)-aluminum(Alq3)(x nm)/Mg:Ag.通过改变有机功能层的厚度,采用陷阱电荷限制电流(TCLC)理论对器件电流的数值拟合方法具体地研究了不同薄膜厚度的有机半导体器件内部电流的传导机制,验证了实验结果和理论推导的一致性.结果表明,Alq3层厚度较低的单层器件随外加电压增大,器件电流经历了从欧姆电导区、TCLC区到TCLC-空间电荷限制电流(SCLC)过渡区三个区域的变化;而对于Alq3层厚度较高的单层器件,Alq3层中的陷阱机构增多,导致电流-电压曲线的SCLC区域消失.  相似文献   

12.
Graphene/Ag/Al-doped zinc oxide (AZO) multilayer films were fabricated by using chemical vapor deposition and magnetron sputtering methods. The electrical and optical properties of the transparent conductive graphene/Ag/AZO films were investigated. The graphene/Ag/AZO film can maintain high conductivity and transmittance without obvious degradation during bending test. A green flexible organic light emitting diode with a structure of graphene/Ag/AZO/N,N-diphenyl-N,N-bis(1-napthyl)-1,1-biphenyl-4,4-diamine/tris(8-hydroxyquinoline) aluminum(III)/lithium fluoride/Al exhibited a stable green emission and light-emitting efficiency during the cycle bending test. The multilayer films hold promise for application in flexible optoelectronic devices.  相似文献   

13.
AC driven inorganic electroluminescence (EL) of the carbon nanotube (CNT)-polymer/phosphor composite was fabricated to investigate the effect of the critical percolation threshold by CNT concentration on EL performance. In order to control the appropriate CNT condition in EL device, CNTs were shortened by cryogenic crushing and purified by thermal treatment. Among various CNT concentrations in the composite film, the critical percolation threshold can be found to be 0.0925 wt.% by fitting conductivity data of the composite film. Near the critical percolation threshold of a CNT concentration, the EL performances of the composite EL were greatly increased compared to the reference EL. The tunneling barrier thickness at the ZnS–CuxS contact could become thin to induce more charge carrier tunneling into ZnS host lattice by the local field enhancement of CNTs, resulting in increased electron–hole recombination to produce more light emission.  相似文献   

14.
聂海  唐先忠  陈祝  吴丽娟 《半导体学报》2008,29(8):1575-1580
在新型空穴传输聚合物聚TPD(PTPD)中掺杂电子传输有机小分子荧光染料Rubrene制成薄膜器件.考察了影响聚合物掺杂小分子薄膜器件发光性能的因素.实验表明,通过在器件中掺杂,可以控制器件所发光的颜色.研究了PTPD掺杂Rubrene分子薄膜的电致发光光谱和光致发光光谱.由实验可知.在光致发光中存在从PTPD向Rubrene的能量传递和电荷转移,而电致发光则存在从PTPD向Rubrene的能量传递和Rubrene分子对载流子的俘获.即掺杂器件的发射机制为载流子陷阱和Forster能量转换过程的共同作用.  相似文献   

15.
Organic single crystals have attracted great attention because of their advantages of high charge‐carrier mobility, high chemical purity, and potential for flexible optoelectronic devices. However, their intrinsic properties of sensitive to organic solvent and fragile result in a difficulty in the fabrication of the organic crystal‐based devices. In this work, a simple and non‐destructive technique of template stripping is employed to fabricate single‐crystal‐based organic light‐emitting devices (OLEDs). Efficient and uniform carrier injection induced by an improved contact between crystals and both top and bottom electrodes is realized, so that a homogeneous and bright electroluminescence (EL) are obtained. Highly polarized EL and even white emission is also observed. Moreover, the crystal‐based OLEDs exhibit good flexibility, and keep stable EL under a small bending radius and after repeated bending. It is expectable that this technique would support broad applications of the organic single crystals in the crystal‐based optoelectronic devices.  相似文献   

16.
High performance organic light-emitting devices (OLEDs) have been investigated by using fluorescent bis (2-methyl-8-quinolinolato)(para-phenylphenolato)aluminum(BAlq) as an emissive layer on the performance of multicolor devices consisting of N, N'-bis-(1-naphthyl)-N,N'diphenyl- 1,1'-biphenyl-4,4'- diamine (NPB) as hole transport layer. The results show that the performance of heterostructure blue light-emitting device composed of 8-hydroxyquinoline aluminum (Alq3) as an electron transport layer has been dramatically enhanced. In the case of high performance heterostructure devices, the electroluminescent spectra has been perceived to vary strongly with the thickness of the organic layers due to the different recombination region, which indicates that various color devices composed of identical components could be implemented by changing the film thickness of different functional layers.  相似文献   

17.
BCP的厚度对OLED性能的影响   总被引:11,自引:5,他引:6  
设计了一种有机电致发光器件(OLED)结构:ITO/NPB(50nm)/BCP(x)/Alq3(50mm)/LiF(0.5mm)/Al(120nm)。在实验中改变BCP的厚度,调整电子和空穴的注入平衡,控制发光层(EML)。研究发现:当BCP的厚度为0nm时,器件为典型的双层OLED结构,光谱为绿色的Alq3特征光谱;当厚度为8nm或8nm以上时,发光区完全基于NPB层,器件为蓝色发光;当厚度在1nm到8nm时,NPB层和Alq3层对发光都有贡献,EL谱线包括蓝光发射和绿光发射。BCP层起到了调节载流子复合区域和改变器件发光颜色的作用,因此控制BCP的厚度可以改善器件的性能。  相似文献   

18.
8-羟基喹啉锂蓝色有机电致发光器件   总被引:2,自引:0,他引:2  
合成了蓝色有机薄膜电致发光材料8-羟基喹啉锂(Liq),8-羟基喹啉锂薄膜的PL光谱峰位于475nm^2分析了8-羟基喹啉锂发射光谱蓝移的原因^2制备了两种结构的蓝色发光器件,其最高亮度分别为1200cd/m^2和2000cd/m^2,EL峰位于490nm^2用能级图比较和分析了两种器件的特性。  相似文献   

19.
The charge transport and recombination in white‐emitting polymer light‐ emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single‐carrier devices the effect of the green‐ and red‐emitting dyes on the hole and electron transport is determined. The red dye acts as a deep electron trap thereby strongly reducing the electron transport. By incorporating trap‐assisted recombination for the red emission and bimolecular Langevin recombination for the blue emission, the current and light output of the white PLED can be consistently described. The color shift of single‐layer white‐emitting PLEDs can be explained by the different voltage dependencies of trap‐assisted and bimolecular recombination.  相似文献   

20.
在制作TIO/O-PPV/CuPc/Alq3/Al器件结构中,我们对可溶性PPV衍生物2-甲氧基-5-壬氧基-聚对苯乙炔(O-PPV)薄膜进行两种方法处理即:真空干燥和未干燥。结果发现,在加相同脉冲电压下(12V),经真空干燥的器件的电致发光光谱主要来自O-PPV发光;未经干燥的器件,由于空穴和电子复合区域的变化Alq3发光比例有大幅度的提高,这表明,O-PPV中残余溶剂存在,薄膜中的空载流子迁移能力比干燥的薄膜有较大的提高,电子和空穴复合区域发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号