首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
采用球坐标系下非线性浅水波方程, 研究日本本州M9.0大地震引发的海啸对中国东南沿海的影响, 并计算了冲绳海槽构造带上3个不同段落可能发生潜在地震引发的海啸, 分析这些海啸与日本大海啸的浪高和走时关系. 结果表明, 日本地震海啸模拟结果与日本当地报道及中国东南沿海7个验潮站的报道结果相符. 冲绳海槽构造带中段可能发生的3次不同震级(M7.0, M7.5, M8.0)潜在地震引发的海啸到达中国东南沿海的时间比日本海啸提前约4个小时, 从震源区传播3个多小时即可到达华东沿海部分验潮站. 冲绳海槽M7.5潜在地震海啸在验潮站上计算的波高与日本海啸相当, 中冲绳海槽M8.0潜在地震海啸在大陈站的波高将超过0.9 m, 在坎门站波高将超过1.8 m. 北冲绳海槽的潜在地震海啸威胁主要集中在江苏盐城、 上海一带, 南冲绳海啸主要对台湾东北部和浙江沿海产生威胁. 本文对冲绳海槽构造带上潜在地震引发海啸的模拟结果, 可为中国东南沿海地区的防震减灾、 海啸预警提供有意义的参考.   相似文献   

2.
冲绳海槽地震海啸的数值试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在分析东海水深与地震情况基础上,我们认为冲绳海槽地震具有引发海啸的条件,并对该区海啸传播过程采用单侧破裂方式的有限移动源模型和高阶Boussinesq方程做了一维有限差分法数值模拟,给出了海啸传播过程波形和速度变化图.我们从模拟结果得到初步结论:冲绳海槽特大地震海啸传播到上海近海在5小时后,近海波高在几十厘米范围内.  相似文献   

3.
基于日本南海海槽地震活动性和历史海啸事件记载的分析,本文对日本南海海槽发生MW9.1罕遇地震情况下的海啸进行了数值模拟研究.结果表明:该地震可引发初始波幅约10 m的海啸,6个小时后传至浙江沿海,近岸各处波幅为1—2 m;8个小时后靠近上海海岸线,最大波幅约2 m,受地形影响局地爬高至近3 m;11个小时后抵达苏北黄海沿岸,预计波幅普遍在1 m左右.海啸的上岸高度与海岸附近的海深和海岸线的形态密切相关.我国近岸海域地形变化复杂,海湾众多,对海啸波有放大作用,该模拟结果可能比实际传播到近岸时偏小,因此综合评估日本海啸影响我国华东地区的规模m可达1—2级左右.一旦日本南海发生罕遇地震对我国的影响不容忽视,尤其遇上风暴潮与天文大潮叠加,则可能会造成一定程度的海啸灾害.   相似文献   

4.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

5.
运用数值模拟的方法对在冲绳海槽产生9.0级地震,并引发海啸的过程和海啸波在东海浅水大陆架地形上的传播过程进行研究.模拟的结果表明,数值模拟产生的波浪符合海啸波的特点,东海浅水大陆架适合海啸波的传播.  相似文献   

6.
东海潜在地震海啸特点   总被引:1,自引:0,他引:1  
董非非  朱元清  姜辉  邓辉 《内陆地震》2009,23(4):490-498
主要从东海发生地震海啸的可能性分析,海啸传播过程的特点以及发生概率几个方面重点阐述讨论了东海地震海啸的一些特性,并分析了地震海啸在东海发生的概率及其特点。得出东海潜在海啸源区主要位于冲绳海槽内,数值模拟海啸在东海的传播过程方程应采用球坐标系下的线性方程,对于近岸的传播包括上岸部分的研究应该采用笛卡儿坐标系下的非线性方程,并且要考虑底部摩擦等项的对波浪的衰减作用。  相似文献   

7.
根据构造相似条件分析,琉球海沟与日本海沟、智利海沟、印尼巽他海沟一样具备发生9级罕遇超巨大地震的可能。在对近几年来全球发生的超巨大地震参数及构造对比分析的基础上,设定琉球海沟9.0级地震参数,并将其引发的海啸进行数值模拟研究。结果表明,该地震可引发初始波高为8m的海啸,台湾东北部半小时后遭受10m以上海啸,3~4小时左右传至浙南、闽北沿岸,近岸各处波高在1~2m;5小时左右传至浙北、粤北沿岸,浙江近岸各处波高在2m左右,广东沿海、台湾海峡由于台湾岛的正面阻挡,海啸波高低于50cm;8小时后靠近上海海岸线,最大波高约1m。海啸的上岸高度与海岸附近的海深和海岸线的形态密切相关,我国东南海域地形变化复杂、海湾众多,对海啸波有放大作用,模拟结果可能比实际海啸偏小。我国沿海地区分布着不少已建和在建的核电厂,在核电设计时未考虑海啸,一旦发生这种罕遇地震海啸则影响不可忽视,尤其是若与风暴潮、天文大潮叠加则可能出现严重后果。由于核电安全要求万无一失,故须制订有效预警和应对措施。  相似文献   

8.
南黄海和东海地区现代构造应力场特征的研究   总被引:20,自引:2,他引:20       下载免费PDF全文
分析研究了南黄海和东海地区18口石油勘探钻井的井孔崩落特征,结合对琉球岛弧和冲绳海槽地区浅源地震震源机制解的分析,确认了南黄海地区与我国华北地区有类似的现代构造应力场特征;并得出东海地区的最大水平压应力方向为NEE-SWW,最小水平压应力方向为NNW-SSE,它们分别与冲绳海槽地区的最大和最小主压应力方向接近;东海地区地壳上层的水平差应力可能不强,这与该地区没什么地震活动的特点是一致的.根据应力场特征推断,我国东部地区并未受到菲律宾海板块俯冲的推挤作用,而是可能受到垂直于冲绳海槽走向的拉伸作用的影响.  相似文献   

9.
基于多源数据资料,揭示了冲绳海槽海底地形地貌特征.提出确定大陆坡折点、大陆坡脚点、中轴点和最深点的计算方法.通过对48条横穿大陆坡的剖面的计算,确定了东海大陆坡折点及连线、大陆坡脚点及连线;通过对39条横穿冲绳海槽轴部地形剖面的计算和综合分析确定了冲绳海槽最深点、中轴点及连线.大陆坡折线是陆架与陆坡的分界线,东海大陆坡折线总体位于200 m水深,在海槽北段至中段连续,在海槽南段跳跃.大陆坡脚线是陆坡与海槽底部的分界线,其水深自冲绳海槽北向南逐渐加深,南部大陆坡被海底峡谷强烈切割,导致大陆坡脚点分布复杂.横穿海槽北部、中部和南部的地形剖面分别呈现为W型、复合W型及U型特征,导致中轴点在海槽中部与北部多分布在海山峰及线性海山脊,在南部多分布于雁行洼地中央,由中轴点形成的中轴线是冲绳海槽东西向分界线,也表明海槽是东海大陆架向东延伸的天然分隔.海平面波动、海底峡谷影响了大陆坡折线和大陆坡脚线分布,构造和沉积控制了中轴线的分布.  相似文献   

10.
东海地区现代构造应力场及其成因探讨   总被引:17,自引:3,他引:14       下载免费PDF全文
分析了东海东南部地区5口3 000余米深、井径测井段千余米至两千米长的钻孔孔壁崩落特征,结合以前分析过的另外11口深钻孔的孔壁崩落特征,推断出东海地区的最大水平主压应力方向为NE-SW向,水平差应力不强.分析了冲绳海槽和琉球岛弧地区1977~1998年中心地震矩张量解的P,T轴方位分布.结果表明,冲绳海槽地区的P轴方向多为NE-SW向,与海槽延伸方向一致.海槽地区地震震源机制解的T轴方向为NE-SW向,与海槽延伸方向垂直.这些特征说明,菲律宾海板块对东海地区的水平作用并不是挤压,而是拉张.利用二维弹性有限元模拟法研究了东海地区现代应力场的成因.结果表明,东海地区应力场和台湾地区的强烈北西向挤压与琉球岛弧的弧后扩张有关.东海地区水平差应力不强可能是该地区强地震少的动力原因.   相似文献   

11.
In this paper,we present a numerical simulation of the propagation of a tsunami in the East China Sea,which might be induced by a hypothetical M8.5 earthquake in Okinawa Trough. Our results show that the initial maxi-mum wave height of tsunami could reach as high as 4.3 m for the hypothetical earthquake. It would take 3.5~4 hours for the tsunami to propagate to the coast of Zhejiang Province,and 7~8 hours to the near-shore of Shanghai. The peak tsunami height could be up to about 2 m in the coast of Zhejiang Province. Based on the numerical ex-periments,we plot the arrival time contours of tsunami in East China Sea and time history curves on the three ob-servational stations,and discussed the significance of the pre-analysis.  相似文献   

12.
Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests.Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.  相似文献   

13.
This paper employs a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004, to identify and interpret the factors that have contributed to the significant spatial variability of the level of tsunami impact along the coastal belt of the eastern province of Sri Lanka. The model results considered in the present analysis include the distribution of the amplitude of the tsunami and the pattern of wave propagation over the continental shelf off the east coast, while the field data examined comprise the maximum water levels measured at or near the shoreline, the horizontal inundation distances and the number of housing and other buildings damaged. The computed maximum amplitude of the tsunami at water points nearest the shoreline along the east coast shows considerable variation ranging from 2.2 m to 11.4 m with a mean value of 5.7 m; moreover, the computed amplitudes agree well with the available field measurements. We also show that the shelf bathymetry off the east coast, particularly the submarine canyons at several locations, significantly influences the near-shore transformation of tsunami waves, and consequently, the spatial variation of the maximum water levels along the coastline. The measured values of inundation also show significant variation along the east coast and range from 70 m to 4560 m with a median value of 700 m. Our analyses of field data also show the dominant influence of the coastal topography and geomorphology on the extent of tsunami inundation. Furthermore, the measured inundation distances indicate no apparent correlation with the computed tsunami heights at the respective locations. We also show that both the computed tsunami heights and the measured inundation distances for the east coast closely follow the log-normal statistical distribution.  相似文献   

14.
日本Mw9.0级地震海啸数值模拟与启示   总被引:2,自引:0,他引:2  
2011年3月11日13时46分日本东北部海域发生Mw9.0级特大地震,地震诱发了海啸.本文依据USGS的震源机制解,进行了地震海啸的数值模拟,并与美国国家海洋与大气管理局布设的海底压力计记录的水深数据对比分析,结果表明数值模拟结果可信.同时,进一步分析了海啸造成巨大损失的原因,并对未来我国海啸防灾减灾工作给出了几点建...  相似文献   

15.
The 1771 Yaeyama tsunami is successfully reproduced using a simple faulting model without submarine landslide. The Yaeyama tsunami (M 7.4), which struck the southern Ryukyu Islands of Japan, produced unusually high tsunami amplitudes on the southeastern coast of Ishigaki Island and caused significant damage, including 12,000 casualties. Previous tsunami source models for this event have included both seismological faults and submarine landslides. However, no evidence of landslides in the source has been obtained, despite marine surveying of the area. The seismological fault model proposed in this study, describing a fault to the east of Ishigaki Island, successfully reproduces the distribution of tsunami runup on the southern coast of the Ryukyu Islands. The unusual runup heights are found through the numerical simulation attributable to a concentration of tsunami energy toward the southeastern coast of Ishigaki Island by the effect of the shelf to the east. Thus, the unusual runup heights observed on the southeastern coast of Ishigaki Island can be adequately explained by a seismological fault model with wave-ray bending on the adjacent shelf.  相似文献   

16.
Tsunami boulders deposited along the coast constitute important geological evidence for paleotsunami activity. However, boulders can also be deposited by large storm waves. Although several sedimentological and theoretical methods have been proposed to differentiate tsunami and storm wave affected boulders, no appropriate numerical method exists for their differentiation. Therefore, we developed a new numerical scheme to differentiate tsunami and storm wave boulders for coastal boulders on Ishigaki Island, Japan. In this area, tsunami and storm waves have emplaced numerous boulders on the reef and the coast. By conducting numerical calculations of storm waves in this region, we estimated the size of a storm wave that can explain the maximum clast size distribution of boulders on the reef. Consequently, we showed that a wave with a combination of 8 m in initial wave height and 10 s period can satisfy the above conditions when we assume mean sea level. In contrast to the boulders on the reef, all boulders deposited along the shore are heavier than the calculated possible maximum clast size distribution by the storm wave. Therefore, we confirmed these boulders as being of tsunami origin. Results of previous studies showed that they were most likely deposited or reworked by the 1771 Meiwa tsunami. Then, using the tsunami boulders, we numerically estimated the wave period and amplitude of the 1771 Meiwa tsunami, which should have had a 4–5 min period and 5.6–5.9, 6.3–7.0 m amplitude, respectively. Using the proposed scheme, it is possible to differentiate tsunami and storm wave boulders and estimate the size of past storm waves and tsunami waves, although it is noteworthy that there are exceptions for which the scheme cannot be applied.  相似文献   

17.
Numerical analysis of the 1992 Flores Island, Indonesia earthquake tsunami is carried out with the composite fault model consisting of two different slip values. Computed results show good agreement with the measured runup heights in the northeastern part of Flores Island, except for those in the southern shore of Hading Bay and at Riangkroko. The landslides in the southern part of Hading Bay could generate local tsunamis of more than 10 m. The circular-arc slip model proposed in this study for wave generation due to landslides shows better results than the subsidence model, It is, however, difficult to reproduce the tsunami runup height of 26.2 m at Riangkroko, which was extraordinarily high compared to other places. The wave propagation process on a sea bottom with a steep slope, as well as landslides, may be the cause of the amplification of tsunami at Riangkroko. The simulation model demonstrates that the reflected wave along the northeastern shore of Flores Island, accompanying a high hydraulic pressure, could be the main cause of severe damage in the southern coast of Babi Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号