首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
Tan JW  Dong ZJ  Liu JK 《Lipids》2003,38(1):81-84
Five cerebrosides (1–5), including three new ones named cortenuamide A (1), cortenuamide B (2), and cortenuamide C (3), were isolated from the fruiting bodies of the basid-iomycete Cortinarius tenuipes. The structures of those compounds were elucidated as (4E,8E)-N-d-2′-hydroxytetracosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (1), (4E,8E)-N-d-2′-hydroxytricosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8 sphingadienine (2), (4E, 8E)-N-d-2′-hydroxydocosanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (3), (4E, 8E)-N-d-2′-hydroxyoctadecanoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (4), and (4E, 8E)-N-d-2′-hydroxypalmitoyl-1-O-β-d-glycopyranosyl-9-methyl-4,8-sphingadienine (5) by spectral and chemical methods.  相似文献   

2.
Zhan ZJ  Yue JM 《Lipids》2003,38(12):1299-1303
Iwo new compounds (1,2) were isolated from the ethanolic extract of the leaves of Premna microphylla, together with five known compounds. The structures of compounds 1 and 2 were elucidated as (2S,3S,4R,11E)-2-[(2R)-2-hydroxytetracosanoylamino]-11-octadecene-1,3,4-triol (1) and 1-O(9Z,12Z, 15Z-octadecatrienoyl)-3-O-[β-d-galactopyranosyl-(1→6)-O-β-d-galactopyranosyl-(1→6)-α-d-galactopyranosyl] glycerol (2) by means of spectroscopic and chemical methods.  相似文献   

3.
To highlight the role of plants in traditional healing, the leaves and the stems of cultivated Triumfetta cordifolia were phytochemically studied yielding a new nor-ursane type (1), a new ceramide (2) and a new piperidinic ceramide derivative (3) named, respectively, 2α,19α-dihydroxy-3-oxo-23-nor-urs-12-en-28-oic acid, (2R)-2-hydroxy-N-[(2S,3S,4R,26E)-1,3,4-trihydroxy-26-triaconten-2-yl] tetradecanamide and (2R,8Z)-2-hydroxy-{(2S,3R,5R,6S)-3,5-dihydroxy-6-[(1E,5Z)-hexadeca-1,5-dienyl]-2-(β-d-glucopyranosyloxy)methyl piperidine-1-yl} tetracos-8-enamide (3). These were obtained together with lupeol (4), stigmasterol (5), 3-O-β-d-glucopyranoside of β-sitosterol (6), tormentic acid (7) from stems and heptadecanoic acid (8), β-carotene (9), oleanolic acid (10), and 24-hydroxytormentic acid (11) from leaves. The structures were determined on the basis of NMR data (1H-, 13C-, 2D-NMR analyses), mass spectrometry and confirmed by chemical transformations as well as comparison of spectral data with those reported in the literature. The FRAP method was used to evaluate the antioxidant activity of fractions collected from flash chromatography and isolated compounds. Among the fractions, four reduced FeIII-TPTZ to FeII-TPTZ while isolated pure compounds showed no activity.  相似文献   

4.
Zhang Y  Wang S  Li XM  Cui CM  Feng C  Wang BG 《Lipids》2007,42(8):759-764
Asperamides A (1) and B (2), a sphingolipid and their corresponding glycosphingolipid possessing a hitherto unreported 9-methyl-C20-sphingosine moiety, were characterized from the culture extract of Aspergillus niger EN-13, an endophytic fungus isolated from marine brown alga Colpomenia sinuosa. The structures were elucidated by spectroscopic and chemical methods as (2S,2′R,3R,3′E,4E,8E)-N-(2′-hydroxy-3′-hexadecenoyl)-9-methyl-4,8-icosadien-1,3-diol (1) and 1-O-β-d-glucopyranosyl-(2S,2′R,3R,3′E,4E,8E)-N-(2′-hydroxy-3′-hexadecenoyl)-9-methyl-4,8-icosadien-1,3-diol (2). In the antifungal assay, asperamide A (1) displayed moderate activity against Candida albicans.  相似文献   

5.
A new phytosphingosine-type ceramide (1) was isolated along with nine other compounds—5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol, 5α,8α-epidioxy-(24S)-ergosta-6-en-3β-ol, (24S)-ergosta-7-ene-3β,5α,6β-triol,(22E,24R)-ergosta-7, 22-dien-3β,5α,6β-triol, inosine, adenine, l-pyroglutamic acid, fumaric acid, and d-allitol from the ethanol and chloroform/methanol extract of the fruiting bodies of the basidiomycete Russula cyanoxanotha (Schaeff.) Fr. The structure of (1) was established as (2S,3S,4R,2′R)-2-(2′-hydroxytetracosanoylamino) octadecane-1,3,4-triol by means of spectroscopic and chemical methods.  相似文献   

6.
Lin YP  Yan J  Qiu MH 《Lipids》2006,41(1):97-99
The new substance hemsleyin imine A (1) was isolated along with (2S,3S,4R,2′R)-2-(2′-hydroxytetracosanoylamino)-octadecan-1,3,4-triol (2), (2S,3R,4E,8E)-1-O-β-d-glucopyranosyl-3-hydroxy-2-(2′R-hydroxypalmitoylamino)-4,8-octadecadiene (3) from the rhizomes of Hemsleya macrocarpa var. clavata. Their chemical structures were established mainly by spectral analysis and chemical evidence. Compound 1 possesses the skeleton of an imine moiety, which is novel in natural products.  相似文献   

7.
The acceptance of Solanum surattenses as a host plant for the larvae of Manduca sexta was explained by the presence of feeding stimulants in foliage. Bioassay-guided fractionation of plant extracts resulted in the isolation of a highly active compound (1), which was identified as a furostan derivative {26-O-β-d-glucopyranosyl-(25R)-furosta-5-ene-3-β-yl-O-α-l-rhamnopyranosyl-(1″-2′)-O-α-l-rhamnopyranosyl-(1′″-3″)-O-β-d-glucopyranoside}. This compound has the same steroidal core substructure as that in a stimulant (indioside D) previously identified from potato foliage. However, the sugar substituents attached to the core are different.  相似文献   

8.
From the water-insoluble lipid fraction of the methylene chloride/methanol extract of the starfish Cosmasterias lurida, two new glucosylceramides together with a known glucosylceramide, ophidiacerebroside E, were isolated by chromatographic procedures and characterized by spectroscopic (1H and 13C nuclear magnetic resonance, mass spectrometry) methods. The new compounds were identified as (2S, 3R, 4E, 8E, 10E)-1-(β-d-glucopyranosyloxy)-3-hydroxy-2-[(R)-2-hydroxyheptadecanoyl)amino]-9-methyl-4,8,10-octadecatriene (3) and (2S,3R,4E,8E,10E)-1-(β-d-glucopyranosyloxy)-3-hydroxy-2-[(R)-2-hydroxyoctadecanoyl)amino]-9-methyl-4,8,10-octadecatriene (4).  相似文献   

9.
Shu RG  Wang FW  Yang YM  Liu YX  Tan RX 《Lipids》2004,39(7):667-673
Two antibacterial and xanthine oxidase inhibitory cerebrosides, one of which is chemically new, were characterized from the chloroform-methanol (1∶1) extract of Fusarium sp. IFB-121, an endophytic fungus in Quercus variabilis. By means of chemical and spectral methods [IR, electrospray ionization MS (ESI-MS), tandem ESI-MS, 1H and 13C NMR, distortionless enhancement by polarization transfer, COSY, heteronuclear multiple-quantum coherence, heteronuclear multiple-bond correlation, and 2-D nuclear Overhauser effect correlation spectroscopy], the structure of the new metabolite named fusaruside was established as (2S,2′R,3R,3′E,4E,8E,10E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8,10-sphingatrienine, and the structure of the other was identified as (2S,2′R,3R,3′E,4E,8E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. Both new and known cerebrosides, although inactive to Trichophyton rubrum and Candida albicans, showed strong antibacterial activities against Bacillus subtilis, Escherichia coli, and Pseudomonas fluorescens, with their minimum inhibitory concentrations being 3.9, 3.9, and 1.9 μg/mL, and 7.8, 3.9, and 7.8 μg/mL, respectively. Furthermore, both metabolites were inhibitory to xanthine oxidase, with the IC50 value of fusaruside being 43.8±3.6 μM and the known cerebroside being 55.5±1.8 μM.  相似文献   

10.
From the water-insoluble lipid fraction of the chloroform/methanol/water extract of the gonads and body walls of the Patagonian starfish Allostichaster inaequalis, two new glucosylceramides (4 and 7) were isolated together with the known phalluside-1 (1) and two glucosylceramides (2 and 3) previously isolated from the starfish Cosmasterias lurida. The new compounds were characterized as (2S,3R,4E,8E,10E)-1-(β-d-glucopyranosyloxy)-3-hydroxy-2-[(R)-2-hydroxy-15-tetracosenoyl] amino-4,8,10-octadecatriene (4) and (2S,3R,4E,15Z)-1-(β-d-glucopyranosyloxy)-3-hydroxy-2-[(R)-2-hydroxyhexadecanoyl] amino-4,15-docosadiene (7) by means of spectroscopic and chemical methods.  相似文献   

11.
Chiral intermediates were prepared by biocatalytic processes with oxidoreductases for the chemical synthesis of some pharmaceutical drug candidates. These include: (i) the microbial reduction of 1-(4-fluorophenyl)-4-[4-(5-fluoro-2-pyrimidinyl)-1-piperazinyl]-1-butanone (1) to R-(+)-1-(4-fluorophenyl)-4-[4-(5-fluoro-2-pyrimidinyl)-1-piperazinyl]-1-butanol (2) [R-(+)-BMY 14802], an antipsychotic agent; (ii) the reduction of N-4-(1-oxo-2-chloroacetyl ethyl) phenyl methane sulfonamide (3) to the corresponding chiral alcohol (4), an intermediate for d-(+)-N-4-{1-hydroxy-2-[(-methylethyl)amino]ethyl}phenyl methanesulfonamide [d-(+) sotalol], a β-blocker with class III antiarrhythmic properties; (iii) biotransformation of Nɛ-carbobenzoxy (CBZ)-l-lysine (7) to Nɛ-CBZ-l-oxylysine (5), an intermediate needed for synthesis of (S)-1-[6-amino-2-{[hydroxy(4-phenylbutyl)phosphinyl]oxy}1-oxohexyl]-l-proline (ceronapril), a new angiotensin converting enzyme inhibitor (6) and (iv) enzymatic synthesis of l-β-hydroxyvaline (9) from α-keto-β-hydroxyisovalerate (16). l-β-Hydroxyvaline (9) is a key chiral intermediate needed for the synthesis of S-(Z)-{[1-(2-amino-4-thiazolyl)-2-{[2,2-dimethyl-4-oxo-1-(sulfooxy)-3-azetidinyl] amino}-2-oxoethylidene]amino}oxyacetic acid (tigemonam) (10), an orally active monobactam.  相似文献   

12.
Isorhizochalin (1) was isolated as its peracetate from the EtOH extract of the sponge Rhizochalina incrustata. Its structure and absolute stereochemistry were elucidated as (2S,3R,26R,27R)-2,27-diamino-3-O-β-d-galactopyranosyl-oxy-26-hydroxyoctacosan-18-one by extensive NMR, MS studies, chemical transformations, including micromolar-scale Baeyer–Villiger oxidation, and by analysis of CD spectra of isorhizochalinin perbenzoate (2b). Isorhizochalin is an unprecedented C-2 epimer of rhizochalin having an erythro configuration at the glycosylated 2-amino-3-alkanol α-terminus in contrast with a canonical threo configuration for other representatives of this structural group. Probable biogenesis of 1 is discussed in the context of known sphingolipid biosynthesis beginning with condensation of alanine with a fatty acyl CoA thioester. The aglycone, isorhizochalinin (2a), shows cytotoxicity against human leukemia HL-60 and THP-1 cells with IC50 values of 2.90 and 2.20 μM, respectively.  相似文献   

13.
Wu ZP  Chen Y  Xia B  Wang M  Dong YF  Feng X 《Lipids》2009,44(1):63-70
Two novel ceramides, Candidamide A (1) with a phytosphingolipid structure, and Candidamide B (2) with a tertiary amide structure, together with 12 known compounds (3–14) have been isolated from the bulbs of Zephyranthes candida, The structures of 1 and 2 have been elucidated to be 1,3,5,6-tetrahydroxy-2-(2′-hydroxytetracosanoyl amino)-8-(E)-octadecadiene (1) and (2S,3S,4R,8E,2′R)-2-[N-(2′-hydroxyoctadecanoyl)-N-(1′′,2′′-dihydroxyethyl)-amino]-8-hexacosene-1,3,4-triol (2) on the basis of spectroscopic evidence including IR, MS, NMR (1H-NMR, 13C-NMR, DEPT, 1H–1H COSY, HSQC, HMBC). The known compounds were identified as (2S)-3′,7-dihydroxy-4′-methoxyflavan (3), (2S)-4′-hydroxy-7-methoxyflavan (4), (2S)-4′,7-dihydroxyflavan (5), 7-hydroxy-3′, 4′-methylenedioxyflavan (6), ambrettolide (7), β-sitostero1 (8), β-daucosterin (9), rutin (10), pancratistatin (11), lycorine (12), haemanthidine (13), and haemanthamine (14). In the antimicrobial assay, candidamide A (1) and candidamide B (2) displayed moderate activities against bacteria Staphylococcus aureus and Escherichia coli, and fungi Aspergillus niger, Candida albicans and Trichophyton rubrum.  相似文献   

14.
Luo Y  Yi J  Li B  Zhang G 《Lipids》2004,39(9):907-913
Novel ceramides, rel-(3S,4S,5S)-3-[(2R)-2-hydroxycosanoyl-hexacosanoylamino]-4-hydroxy-5-[(4Z)-tetradecane-4-ene]-2,3,4,5-tetrahydrofuran (1a-g), and a new glucoceramide, 1-O-β-d-glucopyranosyl-(2S,3S,4R,8E)-2-[(2R)-2-hydroxytetracosanoylamino]-1,3,4-octodecanetriol-8-ene (2) were isolated from the aqueous ethanolic extract of the roots of Incarvillea arguta, together with eight known compounds: β-sitosterol (3), oleanolic acid (4), ursolic acid (5), piperin (6), maslinic acid (7), β-sitosterol 6′-O-acyl-β-d-glucopyranoside (8), 8-epideoxyloganic acid (9), and plantarenaloside (10). Their structures were elucidated on the basis of spectral data including IR, MS, NMR [1H NMR, 13C NMR (distortionless enhancement by polarization transfer), 1H−1H COSY, heteronuclear multiplequantum coherence, and heteronuclear multiple-bond coherence correlations]. The relative configurations were established by nuclear Overhauser effect spectroscopy experiments and by comparison of the NMR spectral data and coupling constants with those already reported in the literature.  相似文献   

15.
A new 9-methyl-sphinga-4,8-dienine-containing glucocerebroside (1), together with two additional known analogs, cerebrosides B and D, was isolated from the chloroform-soluble lipid fraction of the ethanol and chloroform/methanol extract of the fruiting bodies of the basidiomycete Polyporus ellisli Berk. and characterized. The structure and relative stereochemistry of the new compound were identified as (2S,3R,4E,8E)-1-(β-d-glucopyranosyl)-3-hydroxy-2-[(R)-2′-hydroxyheptadecanoyl]amino-9-methyl-4,8-octadecadiene by means of spectroscopic (1H, 13C, and two-dimensional nuclear magnetic resonance; mass spectrometry) and chemical methods.  相似文献   

16.
New ceramides from <Emphasis Type="Italic">Rantherium suaveolens</Emphasis>   总被引:1,自引:0,他引:1  
Oueslati MH  Mighri Z  Ben Jannet H  Abreu PM 《Lipids》2005,40(10):1075-1079
A mixture of five new ceramides was isolated from the aerial parts of Rantherium suaveolens and characterized by spectroscopic and chemical methods. Their structures were elucidated by spectroscopic and chemical methods as (2S, 3S, 4R, 2′R, 14E)-2-(2′-hydroxydocosanoylamino)-14-octadecene-1,3,4-triol (1), (2S,3S,4R,2′R, 14F)-2-(2′-hydroxytricosanoylamino)-14-octadecene-1,3,4-triol (2), (2S,3S,4R,2′R,14F)-2-(2′-hydroxytetracosanoylamino)-14-octadecene-1,3,4-triol (3), (2S,3S,4R,2′R,14E)-2-(2′-hydroxypentacosanoylamino)-14-octadecene-1,3,4-triol (4), and (2S,3S,4R,2′R,14E)-2-(2′-hydroxyhexacosanoylamino)-14-octadecene-1,3,4-triol (5).  相似文献   

17.
Kim YH  Kim EH  Lee C  Kim MH  Rho JR 《Lipids》2007,42(4):395-399
Two new monogalactosyl diacylglycerols (MGDGs) along with two known glycolipids were isolated from the moderate polar fraction of the methanolic extract of the brown alga Sargassum thunbergii by using reversed silica flash chromatography. Two new MGDGs were identified as (2S)-1-O-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-O-(9Z,12Z,15Z-octadecatrienoyl)-3-O-β-d-galactopyranosyl-sn-glycerol (1) and (2S)-1-O-(9Z,12Z,15Z-octadecatrienoyl)-2-O-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-d-galactopyranosyl-sn-glycerol (2) by FAB tandem mass spectrometry, NMR techniques, and specific enzyme-catalyzed hydrolysis of the sn-1 fatty acyl linkage. The regiochemical attachment of the acyl chains in the glycerol moiety was established by 2D NMR correlations and confirmed by enzymatic hydrolysis.  相似文献   

18.
Mats Hamberg 《Lipids》1989,24(4):249-255
The major part (80%) of the fatty acid hydroperoxide isomerase activity present in homogenates of the fungus,Saprolegnia parasitica, was localized in the particle fraction sedimenting at 105,000×g. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid and 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid were both good substrates for the particle-bound hydroperoxide isomerase. The products formed from the 13(S)-hydroperoxide were identified as an α,β- and a γ,δ-epoxy alcohol, i.e., 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid and 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid, respectively. The 9(S)-hydroperoxide was converted in an analogous way into an α,β-epoxy alcohol, 10(R),11(R)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid and a γ,δ-epoxy alcohol, 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. 9(R,S)-Hydroperoxy-10(E),12(E)-octadecadienoic acid and 13(R,S)-hydroperoxy-9(E),11(E)-octadecadienoic acid were poor substrates for theS. parasitica hydroperoxide isomerase. Experiments with 13(R,S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the 13(R)-hydroperoxy enantiomer was slowly isomerized by the enzyme. The major product was identified as α,β-epoxy alcohol 11(R),12(R)-epoxy-13(R)-hydroxy-9(Z)-octadecenoic acid.  相似文献   

19.
Previous laboratory studies have shown that the mirid Lygus hesperus is attracted to volatiles emitted from alfalfa; feeding damage increases the amounts of several of these volatiles, and visual cues can enhance attraction further. The present study tested single plant volatiles in electrophysiological and behavioral trials with L. hesperus. Electroantennogram (EAG) analyses indicated that antennae responded to most plant volatiles included in the test, and that when gender differences were observed, males usually were more responsive than females. Antennal responses to the alcohols ((E)-3-hexenol, (Z)-3-hexenol, 1-hexanol), the acetate (E)-2-hexenyl acetate, and the aldehyde (E)-2-hexenal were among the strongest. Moderate responses were observed for (E)-β-ocimene, (E,E)-α-farnesene, (±)-linalool, and methyl salicylate. A dose dependent response was not observed for several terpenes (β-myrcene, β-caryophyllene, (+)-limonene, or both (R)-(+)- and (S)-(−)-α-pinenes). EAG responses, however, were not always consistent with behavioral assays. In Y-tube bioassays, males did not exhibit a positive behavioral response to any of the compounds tested. Instead, males were repelled by (E)-2-hexenyl acetate, (±)-linalool, (E,E)-α-farnesene, and methyl salicylate. In contrast, female L. hesperus moved upwind towards (R)-(+)-α-pinene, (E)-β-ocimene, and (E,E)-α-farnesene, and showed a negative response towards (Z)-3-hexen-1-ol, (S)-(−)-α-pinene, and methyl salicylate. This study emphasizes the use of multiple approaches to better understand host plant finding in the generalist herbivore L. hesperus.  相似文献   

20.
α-Tocopherol was reacted with methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate in the presence of an iron-chelate, Fe(III)-acetylacetonate, at 37°C in benzene. The reaction was carried out either aerobically or anaerobically. The main products of α-tocopherol under air were isolated and identified as two stereoisomers of 4a,5-epoxy-8a-hydroperoxy-α-tocopherone, four stereoisomers of methyl 9-(8a-dioxy-α-tocopherone)-12,13-epoxy-10(E)-octadecenoate, four stereoisomers of methyl 11-(8a-dioxy-α-tocopherone)-12,13-epoxy-9(Z)-octadecenoate, two stereoisomers of methyl 13(S)-(8a-dioxy-α-tocopherone)-9(Z),11(E)-octadecadinoate, and α-tocopherol dimer. Besides the 8a-(lipid-peroxy)-α-tocopherones, two stereoisomers of methyl 11-(α-tocopheroxy)-12(S),13(S)-epoxy-9(E)-octadecenoate, two stereoisomers of methyl 9-(α-tocopheroxy)-12(S),13(S)-epoxy-10(E)-octadecenoate, and two isomers of methyl (α-tocopheroxy)-octadecadienoate were obtained under nitrogen atmosphere. The results indicate that the peroxyl radicals from lipid hydroperoxides prefer to react with the 8a-carbon radical of α-tocopherol and the carbon-centered radicals react with the phenoxyl radical of α-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号