首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The growth of CuO nanosheet arrays on Cu foil was demonstrated. The morphology and structure of the CuO were examined by scanning electron microscopy and X-ray diffraction spectroscopy. The catalytic performance of the obtained CuO/Cu electrode for hydrogen peroxide electroreduction in 3.0 mol dm−3 KOH was evaluated by means of cyclic voltammetry and chronoamperometry. The CuO/Cu electrode shows an onset potential for H2O2 electroreduction comparable to Co3O4 nanowire arrays grown on Ni foam and around 100 mV more negative than precious metal catalysts, such as Pt and Pd, demonstrating its good catalytic activity for H2O2 electroreduction. The stabilized mass current density for H2O2 electroreduction on the CuO/Cu electrode at −0.3 V reached about 57% of that on Co3O4 nanowire arrays grown on nickel foam. Compared to conventional fuel cell electrodes fabricated by mixing active materials with conducting agents and polymer binders, this electrode of CuO nanosheet arrays directly grown on Cu has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.  相似文献   

2.
Co3O4 nanowire arrays freely standing on nickel foam are prepared via template-free growth followed by thermal treatment at 300 °C in air. Their morphology is examined by scanning and transmission electron microscopy. The electrochemical capacitance behavior of the self-supported binderless nanowire array electrode is investigated by cyclic voltammetry, galvanostatic charge-discharge test and electrochemical impedance spectroscopy. The results show that nanowires are formed by nanoplatelets packed roughly layer by layer. They densely cover the nickel foam substrate and have diameters around 250 nm and the lengths up to around 15 μm. The Co3O4 nanowires display a specific capacitance of 746 F g−1 at a current density of 5 mA cm−2. The capacitance loss is less than 15% after 500 charge-discharge cycles. The columbic efficiency is higher than 93%.  相似文献   

3.
The surface of a commercial Li[Ni0.4Co0.3Mn0.3]O2 cathode is modified using Li3PO4-based coating materials. The electrochemical properties of the coated materials are investigated as a function of the pH value of the coating solution and the composition of coating materials. The Li3PO4 coating solution with pH 2 is found to be favorable for the formation of stable coating layers having enhanced electrochemical properties. The Li3PO4, Li1.5PO4, and PO4 coating layers are formed as amorphous phases. However, the Li3−xNix/2PO4 coating layers are composed of small particles with a crystalline phase covered with an amorphous phase. Li3PO4 and Li1.5PO4 coatings considerably enhance the rate capability of the Li[Ni0.4Co0.3Mn0.3]O2 electrode. In contrast, the Li3−xNix/2PO4 coating material, which contained Ni, has an inferior rate capability compared to the LixPO4 series (x = 1.5 and 3), although the LiNiPO4-coated electrode shows a better rate capability than a pristine one. Li3PO4-based coating materials are effective at enhancing the cyclic performance of the electrode in the voltage range of 3.0-4.8 V. DSC analysis also confirms the improved thermal stability attained by coating the cathode with Li3PO4-based materials.  相似文献   

4.
Surface modifications of electrode materials can improve the electrochemical and thermal properties of cathodes for use in lithium batteries. In this study, AlF3-coated LiCoO2 and AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials are blended, as both have the same crystal structure and exhibit similar electrochemical properties. The composite electrodes exhibit high discharge capacities of 180-188 mAh g−1 in a voltage range of 3.0-4.5 V at room temperature. The capacity retention of the composite electrode is greater than 95% of the initial capacity after 50 cycles. The thermal stability of these composite electrodes is greatly improved because of the superior thermal stability of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2. The blended AlF3-coated LiCoO2 and AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 electrode shows two exothermic peaks, one at 227 °C from AlF3-coated LiCoO2 and another at 277 °C from AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2, accompanied by significantly reduced exothermic heat generation.  相似文献   

5.
Porous Co3O4 nanostructured thin films are electrodeposited by controlling the concentration of Co(NO3)2 aqueous solution on nickel sheets, and then sintered at 300 °C for 3 h. The as-prepared thin films are characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical measurements show that the highly porous Co3O4 thin film with the highest electrochemically active specific surface area (68.64 m2 g−1) yields the best electrochemical performance compared with another, less-porous film and with a non-porous film. The highest specific capacity (513 mAh g−1 after 50 cycles) is obtained from the thinnest film with Co3O4 loaded at rate of 0.05 mg cm−2. The present research demonstrates that electrode morphology is one of the crucial factors that affect the electrochemical properties of electrodes.  相似文献   

6.
Li[Ni0.45Co0.1Mn0.45−xZrx]O2 (x = 0, 0.02) was synthesized via co-precipitation method. Partial Zr doping on the host structure of Li[Ni0.45Co0.1Mn0.45]O2 was carried out to improve the electrochemical properties. The Zr-doped Li[Ni0.45Co0.1Mn0.43Zr0.02]O2 was evaluated in terms of specific discharge capacity, cycling performance and thermal stability. The Zr-doped Li[Ni0.45Co0.1Mn0.45−xZr0.02]O2 shows the improved cycling performance and stable thermal stability. The major exothermic reaction was delayed from 252.1 °C to 289.4 °C.  相似文献   

7.
The effects of metallic cobalt (Co) and cobalt monoxide (CoO), as additives in positive electrodes, on the electrochemical performance of nickel/metal hydride (Ni/MH) power batteries are studied. Commercial Co and CoO are charged at 50 °C in 6 M KOH solution. The oxidation mechanism of cobalt materials is investigated by observing structural and morphological evolutions during charging. A pure Co3O4-type phase is formed when the starting material is CoO. When Co is used, a cobalt oxyhydroxide (CoOOH) phase is present, together with a tricobalt tetroxide (Co3O4) phase. In both cases, the cobalt concentration in the electrolyte decreases during oxidation. The final product is dependent on the solubility of cobalt and the kinetics of the reaction that consumes cobalt tetrahydroxide [Co(OH)4]2−. The highly compact CoOOH phase, which works well between the nickel foam frame and nickel hydroxide [Ni(OH)2] particles, enhances the power performance of Ni/MH power battery. The Co3O4 phase, which works well in connecting Ni(OH)2 particles, improves the capacitive performance of Ni/MH power battery.  相似文献   

8.
Brownmillerite oxide Ca2Fe2−xCoxO5 (x = 0.2, 0.4, 0.6) was characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. Ca2Fe2−xCoxO5 has no reaction with Sm0.2Ce0.8O1.9 (SDC) electrolyte at 1100 °C for 10 h in air. The thermal expansion coefficient (TEC) of Ca2Fe2−xCoxO5 increased with increasing Co content, and the TEC value was compatible with SDC. The electrode properties of Ca2Fe2−xCoxO5 were studied under various temperatures and oxygen partial pressures. The polarization resistance (Rp) of Ca2Fe2−xCoxO5 with x = 0.2, 0.4 and 0.6 are 0.23, 0.48 and 1.05 Ω cm2 at 700 °C in air, respectively. The rate-limiting step for oxygen reduction reaction was the charge transfer process. Ca2Fe1.8Co0.2O5 cathode exhibits the lowest overpotential of about 50 mV at a current density of 70 mA cm−2 at 700 °C in air.  相似文献   

9.
Current paper comprises the electrodeposition of nanostructured porous Co1−xNix layered double hydroxide (Co1−xNix LDHs) thin films on to stainless steel substrate by a potentiodynamic mode. The compositional impacts on the various properties of Co1−xNix LDHs are examined via structural, morphological, surface wettability and electrochemical studies. The nanocrystalline Co1−xNix LDHs thin films possess varying porous, nanoflake like morphology and superhydrophilic behavior by the composition influence. Electrochemical studies demonstrate the supercapacitive performance of Co1−xNix LDHs thin film electrodes. The maximal specific capacitance for Co1−xNix LDHs electrode is found to be ∼1213 F g−1 for composition Co0.66Ni0.34 LDH in 2 M KOH electrolyte at 5 mV s−1 scan rate owing specific energy of 104 Whkg−1, specific power of 1.44 kW kg−1 with ∼94% of coulomb efficiency and stability of electrode retained to 77% after 10,000th cycle. The high capacitance retention proposes the deposited Co1−xNix LDHs thin film as promising contender for supercapacitor applications.  相似文献   

10.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

11.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes.  相似文献   

12.
Cobalt–nickel layered double hydroxides (CoxNi1−x LDHs) were deposited onto stainless steel electrodes by the potentiostatic deposition method at −1.0 V vs. Ag/AgCl using various molar ratios of Co(NO3)2 and Ni(NO3)2 in distilled water. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. A network of CoxNi1−x LDH nanosheets was obtained. The nature of the cyclic voltammetry and charge–discharge curves suggested that the CoxNi1−x LDHs exist in the form of solid solutions. The capacitive characteristics of the CoxNi1−x LDHs in 1 M KOH electrolyte showed that Co0.72Ni0.28 LDHs had the highest specific capacitance value, 2104 F g−1, which is also the highest yet reported value for oxide materials in general.  相似文献   

13.
Within the framework of this work, spinel-type ternary transition metal oxides of nickel, cobalt and iron with the composition FexNi1−xCo2O4 (0 ≤ x ≤ 1) were prepared and tested as promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline water electrolysis. The hydroxide precipitation method was used for the synthesis. The morphology, structure and specific surface area of the prepared electrocatalysts were determined by means of scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, the Brunauer Emmet Teller method and X-ray photo electron spectroscopy. The electrochemical properties were tested by thin-film technique on a rotating disk electrode and in a single-cell laboratory water electrolyzer coupled with electrochemical impedance spectroscopy. The OER studies indicate that substitution of Ni by Fe increases the electrocatalytic activity of the resulting material significantly. The highest activity was achieved for x = 0.1. Whereas the current density obtained using a pure nickel anode in the water electrolysis test was 54 mA cm−2 at a cell voltage of 1.85 V, in the case of the anode modified with NiCo2O4 catalyst the value was 87 mA cm−2. Using ternary transition metal oxides in the water electrolysis test and under identical conditions, the catalyst with the highest activity displayed a current density of 115 mA cm−2.  相似文献   

14.
The influence of Co3O4 as a sintering aid for a series of cobalt-containing perovskite oxides on the microstructure and electrical properties have been investigated. X-ray diffraction and scanning electron microscopic results showed that well connected electrode particles with firm adhesion to the 8 mol% yttria-stabilized zirconia (YSZ) electrolyte surface were realized at a temperature free from interfacial phase reaction. Both ohmic and polarization resistances of symmetric cells by adopting YSZ electrolyte, measured by electrochemical impedance spectroscopy, were much lower than that without adding Co3O4. The peak power density of 1176 mW cm−2 at 750 °C was achieved when La0.6Sr0.4Co0.2Fe0.8O3−δ + Co3O4 was selected as a representative cobaltite cathode, which is much higher than a similar fuel cell with the cathode fabricated by a conventional way. Fabrication of interlayer-free electrodes by applying Co3O4 as a sintering aid is very simple and general, applicable for a wide range of cobalt-containing electrode materials.  相似文献   

15.
Electrochemical and thermal properties of pristine and ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials are compared. The hydrothermal method is introduced for the fabrication of a uniform coating layer. The formation of a compact coating layer on the surface of pristine powder is observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From TEM-EDS and XPS analysis, it is inferred that the coating layer is ZrOxFy (zirconium oxyfluoride) form. The coated Li[Ni1/3Co1/3Mn1/3]O2 electrodes have better rate capability and cyclic performance at high temperature compared with the pristine electrode. The thermal stability of the Li[Ni1/3Co1/3Mn1/3]O2 electrode is also enhanced by the ZrFx coating. Such enhancements are due to the presence of a stable coating layer, which effectively suppresses the chemical instability ascribed to surface reaction between electrode and electrolyte.  相似文献   

16.
K2NiF4-type structure oxides La2Cu1−xCoxO4 (x = 0.1, 0.2, 0.3) are synthesized and evaluated as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). The materials are characterized by XRD, SEM and electrochemical impedance spectrum (EIS), respectively. The results show that no reaction occurs between La2Cu1−xCoxO4 electrode and Ce0.9Gd0.1O1.95 (CGO) electrolyte at 1000 °C. The electrode forms good contact with the electrolyte after sintering at 800 °C for 4 h in air. The electrode properties of La2Cu1−xCoxO4 are studied under various temperatures and oxygen partial pressures. The optimum composition of La2Cu0.8Co0.2O4 results in 0.51 Ω cm2 polarization resistance (Rp) at 700 °C in air. The rate limiting step for oxygen reduction reaction (ORR) is the charge transfer process. La2Cu0.8Co0.2O4 cathode exhibits the lowest overpotential of about 50 mV at a current density of 48 mA cm−2 at 700 °C in air.  相似文献   

17.
Oxygen reduction and evolution have been studied with respect to the development of bifunctional air/oxygen electrode (BFE). Three groups of catalysts have been prepared: (i) CuxCo3−xO4 by thermal decomposition of mixed nitrate and carbonate precursors; (ii) thin films of Co–Ni–Te–O and Co–Te–O were deposited by vacuum co-evaporation of Co, Ni and TeO2 and (iii) CoxOv/ZrO2 films were obtained by electrochemical deposition.  相似文献   

18.
Lithium non-stoichiometric Li[Lix(Ni1/3Co1/3Mn1/3)1−x]O2 materials (0 ≤ x ≤ 0.17) were synthesized using a spray drying method. The electrochemical properties and structural stabilities of the synthesized materials were investigated. The synthesized materials exhibited a hexagonal structure in all the x-value and the lattice parameters of the materials were gradually decreased with increasing x-value due to an increasing amount of Ni3+ ions for charge compensation. The capacity retention ability and rate capability of the stoichiometric Li(Ni1/3Co1/3Mn1/3)O2 material were improved by increasing x-value, the so-called overlithiation. We found that the overlithiated materials could keep more structural integrity than the stoichiometric one during electrochemical cyclings, which could be one of reasons for a better electrochemical properties of the overlithiated materials.  相似文献   

19.
Amorphous Mg65Ni27La8 alloy is prepared by melt-spinning. The alloy surface is modified using different contents of graphite to improve the performances of the Mg65Ni27La8 electrodes. In detail, the electrochemical properties of (Mg65Ni27La8) + xC (x = 0–0.4) electrodes are studied systematically, where x is the mass ratio of graphite to alloy. Experimental results reveal that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy, reduces the contact resistance of the electrodes and obstructs the formation of Mg(OH)2 on the alloy surface. An optimal content of graphite has been obtained. The (Mg65Ni27La8) + 0.25 C electrode has the largest discharge capacity of 827 mA h g−1, which is 1.47 times as large as that of the electrode without graphite, and the best electrochemical kinetics. Further increasing of graphite content will lead to the increase of contact resistance and activation energy for charge-transfer reaction of the electrode, resulting in the degradation of electrode performance.  相似文献   

20.
Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 layered materials were synthesized by the co-precipitation method with different Li/M molar ratios (M = Ni + Mn + Co). Elemental titration evaluated by inductively coupled plasma spectrometry (ICP), structural properties studied by X-ray diffraction (XRD), Rietveld analysis of XRD data, scanning electron microscopy (SEM) and magnetic measurements carried out by superconducting quantum interference devices (SQUID) showed the well-defined α-NaFeO2 structure with cationic distribution close to the nominal formula. The Li/Ni cation mixing on the 3b Wyckoff site of the interlayer space was consistent with the structural model [Li1−yNiy]3b[Lix+yNi(1−x)/3−yMn(1−x)/3Co(1−x)/3]3aO2 (x = 0.02, 0.04) and was very small. Both Rietveld refinements and magnetic measurements revealed a concentration of Ni2+-3b ions lower than 2%; moreover, for the optimized sample synthesized at Li/M = 1.10, only 1.43% of nickel ions were located into the Li sublattice. Electrochemical properties were investigated by galvanostatic charge-discharge cycling. Data obtained with Li1+x(Ni1/3Mn1/3Co1/3)1−xO2 reflected the high degree of sample optimization. An initial discharge capacity of 150 mAh g−1 was delivered at 1 C-rate in the cut-off voltage of 3.0-4.3 V. More than 95% of its initial capacity was retained after 30 cycles at 1 C-rate. Finally, it is demonstrated that a cation mixing below 2% is considered as the threshold for which the electrochemical performance does not change for Li1+x(Ni1/3Mn1/3Co1/3)1−xO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号