首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dietary cholesterol, membrane cholesterol and cholesterol synthesis.   总被引:2,自引:0,他引:2  
C Lutton 《Biochimie》1991,73(10):1327-1334
  相似文献   

2.
Hepatic cholesterol metabolism in cholesterol gallstone disease   总被引:3,自引:0,他引:3  
Hepatic cholesterol metabolism was examined in 27 Swedish patients with cholesterol gallstone disease and in 13 patients free of gallstones operated for roentgenographically suspect polyps in the gallbladder. All 40 patients underwent cholecystectomy, and a liver biopsy and gallbladder bile were obtained at surgery. The cholesterol saturation of gallbladder bile was significantly higher in patients with gallstones compared to the gallstone-free controls (131 +/- 13 vs. 75 +/- 5%, P less than 0.001). Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, governing cholesterol synthesis, did not differ between gallstone and gallstone-free patients (104 +/- 11 vs. and 109 +/- 22 pmol/min per mg protein, respectively). The activity of cholesterol 7 alpha-hydroxylase, catalyzing the catabolism of cholesterol to bile acids, was not significantly decreased in gallstone patients (6.2 +/- 1.1 vs. 8.0 +/- 2.0 pmol/min per mg protein). The capacity to esterify cholesterol, judged by the activity of acyl coenzyme A:cholesterol acyltransferase (ACAT), was similar in gallstone and gallstone-free patients (5.4 +/- 0.4 vs. 6.7 +/- 1.1 pmol/min per mg protein). In the presence of exogenous cholesterol, ACAT activity increased by more than fourfold in both groups. No correlation was found between the saturation of gallbladder bile and any of the mentioned enzyme activities in gallstone patients. It is concluded that distinct abnormalities in cholesterol metabolizing enzymes are not of major importance for development of gallstones in Swedish patients with cholesterol gallstone disease. The results support the contention that the etiology of cholesterol gallstones is multifactorial.  相似文献   

3.
Another cholesterol hypothesis: cholesterol as antioxidant   总被引:2,自引:1,他引:1  
Current emphasis on cholesterol as agency if not cause of human atherosclerosis and subsequent cardiovascular disease ignores the essentiality of cholesterol in life processes. Additionally ignored is the ubiquitous presence of low levels of oxidized cholesterol derivatives (oxysterols) in human blood and select tissues, oxysterols also implicated in atherosclerosis. Whereas such oxysterols may be regarded putatively as agents injurious to the aorta, an alternative view of some of them is here proposed: that B-ring oxidized oxysterols of human blood represent past interception of blood and tissue oxidants in vivo by cholesterol as an ordinary aspect of oxygen metabolism. Such interception and subsequent efficient hepatic metabolism of oxysterols so formed, with biliary secretion and fecal excretion, constitute as in vivo antioxidant system. Whether cholesterol, oxysterols, oxidized lipoproteins, or oxidants in blood, singly or in concert, cause or exacerbate human atherosclerosis remains to be understood.  相似文献   

4.
5.
We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40 °C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10–700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4 °C.  相似文献   

6.
7.
8.
9.
Membrane cholesterol dynamics: cholesterol domains and kinetic pools   总被引:10,自引:0,他引:10  
Nonreceptor mediated cholesterol uptake and reverse cholesterol transport in cells occur through cellular membranes. Thus, elucidation of cholesterol dynamics in membranes is essential to understanding cellular cholesterol accumulation and loss. To this end, it has become increasingly evident that cholesterol is not randomly distributed in either model or biologic membranes. Instead, membrane cholesterol appears to be organized into structural and kinetic domains or pools. Cholesterol-rich and poor domains can even be observed histochemically and physically isolated from epithelial cell surface membranes. The physiologic importance of these domains is 2-fold: (i) Select membrane proteins (receptors, transporters, etc.) are localized in either cholesterol-rich or cholesterol-poor domains. Consequently, the structure and properties of the domains rather than of the bulk lipid may selectively affect the function of proteins residing therein. (ii) Kinetic evidence suggests that cholesterol transport through and between membranes may occur through specific domains or pools. Regulation of the size and properties of such domains may be controlling factors of cholesterol transport or accumulation in cells. Recent technologic advances in the use of fluorescent sterols have allowed examination of cholesterol domain structure in model and biologic membranes. These techniques have been applied to examine the role of high-density lipoprotein, cholesterol lowering drugs, and intracellular lipid transfer proteins in membrane sterol domain structure and sterol movement between membranes.  相似文献   

10.
11.
The abundance of cell cholesterol is governed by multiple regulatory proteins in the endoplasmic reticulum (ER) which, in turn, are under the control of the cholesterol in that organelle. But how does ER cholesterol reflect cell (mostly plasma membrane) cholesterol? We have systematically quantitated this relationship for the first time. We found that ER cholesterol in resting human fibroblasts comprised approximately 0.5% of the cell total. The ER pool rose by more than 10-fold in less than 1 h as cell cholesterol was increased by approximately 50% from below to above its physiological value. The curve describing the dependence of ER on plasma membrane cholesterol had a J shape. Its vertex was at the ambient level of cell cholesterol and thus could correspond to a threshold. A variety of class 2 amphiphiles (e.g., U18666A) rapidly reduced ER cholesterol but caused only minor alterations in the J-curve. In contrast, brief exposure of cells to the oxysterol, 25-hydroxycholesterol, elevated and linearized the J-curve, increasing ER cholesterol at all values of cell cholesterol. This finding can explain the rapid action of oxysterols on cholesterol homeostasis. Other functions have also been observed to depend acutely on the level of plasma membrane cholesterol near its physiological level, perhaps reflecting a cholesterol-dependent structural or organizational transition in the bilayer. Such a physical transition could serve as a set-point above which excess plasma membrane cholesterol is transported to the ER where it would signal regulatory proteins to down-regulate its further accumulation.  相似文献   

12.
This review considers the hypothesis that a small portion of plasma membrane cholesterol regulates reverse cholesterol transport in coordination with overall cellular homeostasis. It appears that almost all of the plasma membrane cholesterol is held in stoichiometric complexes with bilayer phospholipids. The minor fraction of cholesterol that exceeds the complexation capacity of the phospholipids is called active cholesterol. It has an elevated chemical activity and circulates among the organelles. It also moves down its chemical activity gradient to plasma HDL, facilitated by the activity of ABCA1, ABCG1, and SR-BI. ABCA1 initiates this process by perturbing the organization of the plasma membrane bilayer, thereby priming its phospholipids for translocation to apoA-I to form nascent HDL. The active excess sterol and that activated by ABCA1 itself follow the phospholipids to the nascent HDL. ABCG1 similarly rearranges the bilayer and sends additional active cholesterol to nascent HDL, while SR-BI simply facilitates the equilibration of the active sterol between plasma membranes and plasma proteins. Active cholesterol also flows downhill to cytoplasmic membranes where it serves both as a feedback signal to homeostatic ER proteins and as the substrate for the synthesis of mitochondrial 27-hydroxycholesterol (27HC). 27HC binds the LXR and promotes the expression of the aforementioned transport proteins. 27HC-LXR also activates ABCA1 by competitively displacing its inhibitor, unliganded LXR. 4 Considerable indirect evidence suggests that active cholesterol serves as both a substrate and a feedback signal for reverse cholesterol transport. Direct tests of this novel hypothesis are proposed.  相似文献   

13.
The role of intracellular cholesterol transport in cholesterol homeostasis   总被引:8,自引:0,他引:8  
How cholesterol is transported among the membranes of the cell is obscure. Similarly, the mechanisms governing the abundance of cell cholesterol are not entirely understood. It may be, however, that a link exists between the intracellular transport of cholesterol and its homeostasis. We propose that cholesterol circulates between the plasma membrane, which contains the bulk of the sterol, and organelle membranes, which contain only traces. A putative sensor translates small fluctuations in plasma membrane cholesterol into relatively large changes in this flux, thereby setting the magnitude of the intracellular pools. The cholesterol concentration in the endoplasmic reticulum and mitochondrial membranes then governs the activities of proteins embedded therein that mediate cholesterol transformations. This arrangement creates a feedback loop through which the intracellular effectors regulate the abundance of plasma membrane cholesterol.  相似文献   

14.
The ability of cholesterol esterase to catalyze the synthesis of cholesterol esters has been considered to be of limited physiological significance because of its bile salt requirements for activity, though detailed kinetic studies have not been reported. This study was performed to determine the taurocholate, pH, and substrate requirements for optimal cholesterol ester synthesis catalyzed by various pancreatic lipolytic enzymes, including the bovine 67- and 72-kDa cholesterol esterases, human 100-kDa cholesterol esterase, and human 52-kDa triglyceride lipase. In contrast to current beliefs, cholesterol esterase exhibits a bile salt independent as well as a bile salt dependent synthetic pathway. For the bovine pancreatic 67- and 72-kDa cholesterol esterases, the bile salt independent pathway is optimal at pH 6.0-6.5 and is stimulated by micromolar concentrations of taurocholate. For the bile salt dependent synthetic reaction for the 67-kDa enzyme, increasing the taurocholate concentration from 0 to 1.0 mM results in a progressive shift in the pH optimum from pH 6.0-6.5 to pH 4.5 or lower. In contrast, cholesterol ester hydrolysis by the 67-, 72-, and 100-kDa enzymes was characterized by pH optima from 5.5 to 6.5 at all taurocholate concentrations. Optimum hydrolytic activity for these three enzyme forms occurred with 10 mM taurocholate. Since hydrolysis is minimal at low taurocholate concentrations, the rate of synthesis actually exceeds hydrolysis when the taurocholate concentration is less than 1.0 mM. The 52-kDa enzyme exhibits very low cholesterol ester synthetic and hydrolytic activities, and for this enzyme both activities are bile salt independent. Thus, our data show that cholesterol esterase has both bile salt independent and bile salt dependent cholesterol ester synthetic activities and that it may catalyze the net synthesis of cholesterol esters under physiological conditions.  相似文献   

15.
Experimental data that define conditions under which cholesterol crystallites form in cholesterol/phospholipid model membranes are reviewed. Structural features of the phospholipids that determine cholesterol crystallization include the length and degree of unsaturation of the acyl chains, the presence of charge on the headgroups and interheadgroup hydrogen bonds.  相似文献   

16.
Groups of gerbils were fed purified diets containing either 10 or 20% of safflower, olive, or coconut oil. Each diet was fed without cholesterol and with 0.1 and 0.2% of added cholesterol. The animals were bled after 2, 4, and 8 wk for the determination of the level of serum cholesterol. The major factors affecting the level of serum cholesterol were the kind of dietary oil, the amount of dietary cholesterol, and the length of time the diet was fed. The level of safflower oil had a statistically significant effect but the level of olive or coconut oil had no significant effect. Various other statistically significant interactions were observed which make simple interpretations of the data difficult. The levels of serum cholesterol achieved in the gerbils fed the different oils with no or very low levels of dietary cholesterol were similar to those seen in men fed the same oils. Although the gerbil is apparently resistant to the development of atherosclerosis, it may be a useful model for studying the effect of dietary fats upon cholesterol metabolism.  相似文献   

17.
18.
The interaction of cholesterol absorption and cholesterol synthesis in man   总被引:16,自引:0,他引:16  
The total miscible pool of cholesterol in the body is determined largely by the interaction of cholesterol absorption and synthesis. In the present study we have examined the net effects of this interplay in one normal and five hypercholesteremic subjects when various amounts of cholesterol were made available for absorption. Feeding large amounts of cholesterol to the normocholesteremic patient caused an expansion of body pools by as much as 20 g before the amount of cholesterol re-excreted as fecal neutral steroids each day came into balance with the cholesterol absorbed from the diet. There was no detectable decrease in total body synthesis of cholesterol nor any increase in conversion of cholesterol into bile acids. However, feedback control of cholesterol synthesis was demonstrable when large quantities of plant sterols were fed: in the hypercholesteremic patients thus studied, the absorption of both endogenous and exogenous cholesterol was then greatly reduced, and a compensatory increase in synthesis occurred. Thus, the plant sterol experiments, but not the cholesterol feeding experiment, demonstrated that feedback control by dietary cholesterol does occur in man. That feedback control by dietary cholesterol is relatively unimportant in man seems to be due to the fact that in the metabolic "steady state" the absorption mechanism is essentially saturated by the large amounts of endogenous cholesterol available for reabsorption. These findings demonstrate that there are important differences between man and various laboratory animals in regard to the interaction of absorption and synthesis as factors controlling the size of tissue pools of cholesterol.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号