首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
革兰氏阴性菌的多重耐药性已成为全球广泛聚焦的问题。近年研究发现,耐药结节细胞分化(resistance-nodulation-cell division,RND)家族外排泵的过表达,与革兰氏阴性菌的多重耐药性密切相关。在RND家族中,广泛存在于革兰氏阴性菌中的AcrAB-TolC外排泵被认为是导致多重耐药性的主要原因之一。为了开发有效的抑制剂,需要对AcrAB-TolC外排泵的结构有一个清晰的认识。以往对该外排泵结构的研究主要局限于体外采用X射线晶体学技术或冷冻电镜单颗粒分析技术来解析其单个组分或全泵的结构。细胞冷冻电子断层扫描技术为揭示AcrAB-TolC外排泵在天然细胞膜环境中的组装和运行机制提供了新的见解,本文综述了AcrAB-TolC不同层级的结构数据在研发外排泵抑制剂方面的贡献。  相似文献   

2.
【背景】铜绿假单胞菌(Pseudomonas aeruginosa)耐药性问题日趋严重的重要原因之一是细菌生物被膜的产生,群体感应(quorum sensing, QS)系统在其生物被膜形成过程中发挥了重要作用。QS抑制剂能够抑制生物被膜的形成和毒力因子的分泌,成为解决细菌耐药性问题的新策略。【目的】通过化学方法对las系统信号分子N-(3-氧十二烷基)-l-高丝氨酸内酯[N-3-(oxododecanoyl)-l-homoserine lactone, OdDHL]的母核和酰基侧链同时改变,合成N-十一烷酰基环戊酰胺,命名为Y0-C11-HSL,探讨其对P. aeruginosa生物被膜形成和毒力因子分泌的作用潜力和分子机制。【方法】采用结晶紫染色和扫描电子显微镜(scanning electron microscope, SEM)评价Y0-C11-HSL对生物被膜形成和结构的影响,通过测定毒力因子的产生和运动试验评析Y0-C11-HSL的抑制活性,通过傅里叶红外光谱(Fourier transform infrared spectrometer, FT-IR)研究Y0-C11-HSL对胞外聚合物(extracellular polymers, EPS)表面化学基团的影响,采用分子对接进一步解析Y0-C11-HSL的作用机制。【结果】与对照组相比,在10-200μmol/L浓度梯度下,Y0-C11-HSL能够减少P. aeruginosa生物被膜形成,且在200 μmol/L时减少率达24.1% (P<0.01)。此外,在200 μmol/L处理下,Y0-C11-HSL能够显著抑制绿脓菌素、鼠李糖脂、胞外多糖和水解蛋白酶的分泌,抑制率分别为34.7% (P<0.01)、33.1% (P<0.01)、27.3% (P<0.01)和37.3% (P<0.01),抑制swarming和twitching运动,抑制率分别为45.6% (P<0.01)和51.7% (P<0.01),影响了EPS表面化学基团。分子对接结果表明,Y0-C11-HSL能与OdDHL结合的LasR受体蛋白竞争性结合。【结论】Y0-C11-HSL能与OdDHL结合的LasR受体蛋白竞争性结合,对转录蛋白产生影响,进而下调P. aeruginosa QS相关基因的表达。  相似文献   

3.
梁志彬  陈豫梅  陈昱帆  程莹莹  张炼辉 《遗传》2016,38(10):894-901
抗生素耐药性一直是细菌病害防治的难题,药物外排泵过量表达是细菌耐药性形成的重要机制之一。在革兰氏阴性细菌中,RND(Resistance-nodulation-cell division)家族外排泵在耐药性中发挥着重要作用,近年来的研究表明,依赖于小分子信号物质进行调控的群体感应系统与RND外排泵家族之间存在紧密的相互作用关系。本文在介绍RND家族外排泵的结构、转运机理和群体感应系统的类型及调控方式的基础上,剖析了群体感应系统对RND外排泵的调控机理以及RND外排泵对群体感应系统信号分子转运的影响。深入研究RND家族外排泵与群体感应系统之间的相互依赖、相互制约关系有利于阐明RND家族外排泵的调控机理,并有可能为克服微生物耐药性问题提供新的思路。  相似文献   

4.
钱润泽  罗云孜 《微生物学报》2022,62(10):3899-3912
【目的】Ⅰ型羊毛硫肽通常具有广泛的生物活性,且抑菌机制独特,较少产生耐药性,因而在临床上具有很好的应用前景。本文对Streptomyces coelicolor A3(2)基因组上2个新颖的Ⅰ型羊毛硫肽生物合成基因簇进行研究,以实现目标羊毛硫肽的表达。【方法】首先,通过antiSMASH分析S. coelicolor A3(2)基因组序列,挖掘羊毛硫肽生物合成基因簇,使用BLAST进行基因功能注释,选择可能参与生物合成过程的基因;然后利用基因组装技术构建异源表达质粒,通过接合转移在链霉菌底盘细胞中进行异源表达;最后对发酵产物进行高效液相色谱、质谱及生物活性检测。【结果】通过添加启动子元件重构S. coelicolor A3(2)上基因簇3 (8.9 kb)和基因簇24 (9.0 kb),得到pYES-ColE1-SCO-cluster3和pYES-ColE1-SCO-cluster24。pYES-ColE1-SCO-cluster3在底盘细胞Streptomyces coelicolor M1152和Streptomycessp. A14中成功表达,得到潜在目标化合物coelin 3;pYES-ColE1-SCO-cluster24在底盘细胞Streptomyces sp. ZM13中成功表达,得到潜在目标化合物coelin 24。其中coelin 3对Bacillus subtilis 168和Escherichia coli ATCC 25922具有抑制作用,并且抑菌圈均达到28 mm。【结论】本研究成功使用启动子激活和异源表达策略实现了coelin 3和coelin 24的表达和活性测试,为后续新颖的羊毛硫肽结构解析和作用机制研究奠定了基础。  相似文献   

5.
【背景】大肠杆菌(Escherichia coli)是引起犊牛腹泻的最主要病原菌,其耐药性菌株的不断出现引起广泛关注。【目的】了解内蒙古自治区通辽市犊牛腹泻大肠杆菌耐药性及耐药基因流行情况。【方法】从通辽市多个旗县采集犊牛腹泻样品40份,经细菌分离纯化及16S rRNA基因测序,最终鉴定出20株大肠杆菌。采用药敏试验和PCR方法对分离菌进行耐药性及耐药基因检测分析,并对其中1株多重耐药菌株进行全基因组测序。【结果】20株分离菌均具有多重耐药性,对链霉素、环丙沙星、恩诺沙星和复方新诺明的耐药率达80%以上。所检耐药基因中,aphA1strBTEM-1qnrS检出率达100%。通过对代表性菌株TL-13全基因组测序发现,其基因组大小为4897185bp,GC含量为50.68%,同时携带2个质粒,大小分别为108288bp(pTL13-1)和64018bp(pTL13-2)。质粒中共携带18个可移动耐药基因。【结论】通辽地区犊牛腹泻大肠杆菌多重耐药性普遍存在,4种常见耐药基因普遍流行。  相似文献   

6.
【背景】灵芝多糖是灵芝的重要活性物质之一。UDP-葡萄糖4-差向异构酶(UDP-glucose 4-epimerase,UGE,EC 5.1.3.2)是灵芝多糖合成途径中糖供体生成的重要酶,其参与了UDP-葡萄糖与UDP-半乳糖的相互转化,与多糖中半乳糖残基含量密切相关。【目的】通过对来源于灵芝的UGE基因进行异源表达,丰富灵芝多糖糖供体合成途径重要酶的酶学特性信息,深入了解灵芝多糖代谢合成途径。【方法】以灵芝菌株(Ganoderma lingzhi) CGMCC 5.26的cDNA为模板,克隆得到UGE基因GL30389,并在Escherichia coli BL21(DE3)中诱导表达,产物纯化后进行酶学性质、酶动力学、底物专一性及转化率的研究。【结果】灵芝UGE的分子量为45 kDa。最适反应pH值为6.0,在pH 7.0—9.0范围内有较好的稳定性;最适反应温度为30℃,温度在40℃时稳定性最好。Fe2+和Mg2+对UGE有激活作用。以UDP-葡萄糖为底物时,Km为0.824 mmol/L,Vmax为769.230 μmol/(L·min),kcat为1.333 s—1,kcat/Km为1.618 L/(mmol·s)。灵芝UGE对D-葡萄糖、半乳糖醛酸及N-乙酰葡萄糖胺有催化活性。通过优化pH、温度、底物与酶的配比、添加金属离子将转化率从16.0%提升至39.4%。【结论】灵芝UGE与植物来源的UGE酶学性质较为相似,其催化效率优于大部分细菌来源的UGE。本研究丰富了灵芝多糖糖供体合成途径重要酶的酶学特性信息,有利于深入了解灵芝多糖代谢合成途径。  相似文献   

7.
张欢欢  陈柔珂  徐俊 《微生物学报》2024,64(5):1494-1505
【目的】脯肽酶是一种能从二肽(Xaa-Pro)的C末端水解脯氨酸或羟脯氨酸残基的肽酶。对深海来源的雅氏火球菌(Pyrococcus yayanosii) CH1基因组中PYCH_07700基因编码的蛋白Pyprol的体外酶学性质进行研究,以期发现新型脯肽酶。【方法】在小宝岛热球菌(Thermococcus kodakarensis) TS559中异源表达Pyprol。使用二肽Met-Pro作为底物,检测重组蛋白的脯肽酶活性。【结果】Pyprol的最适温度为100 ℃,最适pH为6.0。Pyprol在与Co2+结合时活性最高,最适的金属离子浓度为1.2 mmol/L。与P. furiosus来源的脯肽酶Pfprol相比,Pyprol在更宽的pH范围具有活性,并且能够耐受更高浓度的金属离子。Pyprol是耐压蛋白,最适静水压为40 MPa。与常压条件下相比,40 MPa下,Pyprol在40、70和100 ℃均有更高的活性。【结论】来源于深海热液喷口的严格嗜压的超嗜热古菌P. yayanosii CH1的新型脯肽酶Pyprol具有热稳定和耐压特性。  相似文献   

8.
侯进慧 《微生物学通报》2008,35(12):1932-1937
多药外排泵造成了细菌的多种药物的耐药现象, 这对感染性疾病的防治提出了挑战。对于多药外排泵的研究不仅使人们认识细菌耐药性机制, 而且为细菌耐药性的防治提供思路。大肠杆菌AcrAB-TolC外排泵系统的结构和调控机制研究取得了一些新进展, 这为病原菌的相关研究提供了参考, 本文对其进行了综述。  相似文献   

9.
根瘤菌在侵染豆科植物过程中会受到活性氧的氧化胁迫,含甲硫氨酸的蛋白质易被氧化成甲硫氨酸亚砜导致蛋白结构和功能改变,甲硫氨酸亚砜还原酶(methionine sulfoxide reductases, Msrs)能将甲硫氨酸亚砜还原成甲硫氨酸,恢复蛋白的结构和功能。前期在华癸中慢生根瘤菌(Mesorhizobium huakuii) 7653R基因组中发现有4个Msrs和抗氧化压力密切相关,但其作用机制仍不清楚。【目的】通过筛选4个Msrs的相互作用底物,为阐明4个Msrs在M. huakuii 7653R中的作用机制提供证据。【方法】按照甲硫氨酸含量由高到低统计M. huakuii 7653R中所有蛋白的分布情况;利用蛋白互作网站预测获得4个Msrs的候选互作底物,将预测互作底物进行功能注释基因本体(gene ontology, GO)分析和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)代谢通路分析;通过细菌双杂交初步验证它们之间的相互作用。【结果】甲硫氨酸含量百分数分布基本呈正态分布形式,位于中间百分数的蛋白最多,位于两边的蛋白较少;筛选获得有6个抗氧化酶和6个转录调控因子是4个Msrs的候选互作底物;细菌双杂交显示,有2个抗氧化酶和5个转录调控因子确实和4个Msrs存在不同程度的相互作用。【结论】为阐明Msrs在根瘤菌M. huakuii 7653R中抵抗氧化压力的作用机制提供了证据,为揭示根瘤菌抵抗活性氧提供了新的思路和方向。  相似文献   

10.
【背景】某些假交替单胞菌可分泌几丁质酶,在降解利用几丁质为水产动物提供营养、免疫、抗病等方面有着重要潜力。【目的】克隆杀鱼假交替单胞菌(Pseudoalteromonas piscicida)C923的一个几丁质酶基因,实现其在大肠杆菌中的异源表达,并对重组几丁质酶的酶学性质进行研究。【方法】从菌株C923测序的基因组中注释到一个几丁质酶家族基因PpchiC,设计引物克隆该基因后进行生物信息学分析;构建载体进行异源表达并从温度、时间与诱导剂浓度进行表达优化;对表达蛋白进行最适温度与pH等酶学性质研究,同时比较了重组菌破碎后上清与沉淀及纯化的酶蛋白对几丁质的降解效应。【结果】基因PpchiC长1350bp,编码450个氨基酸,PpchiC蛋白理论分子量为48.76kDa,等电点为4.78,不稳定系数为29.08。结构域分析发现该蛋白含有一个类型Ⅲ几丁质结合域和一个糖苷水解酶18家族(glycosyl hydrolase 18,GH18)的催化域;PpchiC蛋白含有GH18家族几丁质酶的保守催化基序DxxDxDxE、YxR和[E/D]xx[V/I]。16℃、0.25mmol/L IPTG、诱导12h为其最优化表达条件,PpchiC在50℃、pH8.0时表现出最大酶活性;以胶体几丁质为底物时,PpchiC的Km值为2.58mg/mL、Vmax值为5.04mg/(mL·min)。降解结果表明,菌体的沉淀与上清及从上清中纯化的酶蛋白均有着较好的几丁质降解效应。【结论】杀鱼假交替单胞菌C923基因PpchiC编码GH18家族的几丁质酶,能被大肠杆菌高效表达且降解几丁质效应明显,这为PpchiC及菌株C923的应用提供了参考依据。  相似文献   

11.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

12.
Wang B  Weng J  Fan K  Wang W 《Proteins》2011,79(10):2936-2945
The AcrAB-TolC drug efflux system, energized by proton movement down the transmembrane electrochemical gradient, is responsible for the resistance of the organism to a wide range of drugs. Experimental data suggest functional roles of each part of the assembly, but the detailed working mechanism of this machinery remains elusive. We used elastic network-based normal mode analysis (NMA) to explore the conformational dynamics of the AcrAB-TolC complex. The intrinsic flexibilities of the pore domain in AcrB monomer conform to the previously proposed three-step functionally rotating mechanism for asymmetric AcrB trimer. Conformational couplings across monomers in the AcrB trimer were observed, and the coupling between the transmembrane domain and the other parts of AcrB are strengthened through trimeric assembly. In the tripartite AcrAB-TolC assembly obtained through molecular docking, concerted motions were observed not only at the direct contact interfaces between various components but also between distant parts of the whole complex. The presence of AcrA was shown to significantly strengthen the motional couplings between AcrB and TolC. Overall, NMA revealed an allosteric network in the AcAB-TolC efflux system, which provides hints to our understanding of its detailed working mechanism.  相似文献   

13.
Escherichia coli AcrAB-TolC is a multidrug efflux pump that expels a wide range of toxic substrates. The dynamic nature of the binding or low affinity between the components has impeded elucidation of how the three components assemble in the functional state. Here, we created fusion proteins composed of AcrB, a transmembrane linker, and two copies of AcrA. The fusion protein exhibited acridine pumping activity, suggesting that the protein reflects the functional structure in vivo. To discern the assembling mode with TolC, the AcrBA fusion protein was incubated with TolC or a chimeric protein containing the TolC aperture tip region. Three-dimensional structures of the complex proteins were determined through transmission electron microscopy. The overall structure exemplifies the adaptor bridging model, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel interaction with the α-barrel tip region of TolC, and a direct interaction between AcrB and TolC is not allowed. These observations provide a structural blueprint for understanding multidrug resistance in pathogenic Gram-negative bacteria.  相似文献   

14.
The tripartite AcrAB–TolC multidrug efflux pump of Escherichia coli is the central conduit for cell‐toxic compounds and contributes to antibiotic resistance. While high‐resolution structures of all three proteins have been solved, much remains to be learned as to how the individual components come together to form a functional complex. In this study, we investigated the importance of the AcrB β‐hairpins belonging to the DN and DC subdomains, which are presumed to dock with TolC, in complex stability and activity of the complete pump. Our data show that the DN subdomain β‐hairpin residues play a more critical role in complex stability and activity than the DC subdomain hairpin residues. The failure of the AcrB DN β‐hairpin deletion mutant to engage with TolC leads to the drug hypersensitivity phenotype, which is reversed by compensatory alterations in the lipoyl and β‐barrel domains of AcrA. Moreover, AcrA and TolC mutants that induce TolC opening also reverse the drug hypersensitivity phenotype of the AcrB β‐hairpin mutants, indicating a failure by the AcrB mutant to interact and thus induce TolC opening on its own. Together, these data suggest that both AcrB β‐hairpins and AcrA act to stabilize the tripartite complex and induce TolC opening for drug expulsion.  相似文献   

15.
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.  相似文献   

16.
Enhancement of the cellular exportation of heterologous compounds is an important aspect to improve the product yield in microbial cell factory. Efflux pumps can expel various intra- or extra-cellular substances out of microbial hosts and increase the cellular tolerance. Thus in this study, by using the hydrophobic sesquiterpene (amorphadiene) and diterpene (kaurene) as two model compounds, we attempted to improve isoprenoid production through systematically engineering the efflux pumps in Escherichia coli BL21(DE3). The pleiotropic resistant pumps, AcrAB-TolC, MdtEF-TolC from E. coli and heterologous MexAB-OprM pump from Pseudomonas aeruginosa, were overexpressed, assembled, and finely modulated. We found that overexpression of AcrB and TolC components can effectively enhance the specific yield of amorphadiene and kaurene, e.g., 31 and 37 % improvement for amorphadiene compared with control, respectively. The heterologous MexB component can enhance kaurene production with 70 % improvement which is more effective than TolC and AcrB. The results suggest that the three components of tripartite efflux pumps play varied effect to enhance isoprenoid production. Considering the highly organized structure of efflux pumps and importance of components interaction, various component combinations were constructed and the copy number of key components AcrB and TolC was finely modulated as well. The results exhibit that the combination TolC and TolC and AcrB improved the specific yield of amorphadiene with 118 %, and AcrA and TolC and AcrB improved that of kaurene with 104 %. This study indicates that assembling and finely modulating efflux pumps is an effective strategy to improve the production of heterologous compounds in E. coli.  相似文献   

17.
AcrAB-TolC from Escherichia coli is a multidrug efflux complex capable of transenvelope transport. In this complex, AcrA is a periplasmic membrane fusion protein that establishes a functional connection between the inner membrane transporter AcrB of the RND superfamily and the outer membrane channel TolC. To gain insight into the mechanism of the functional association between components of this complex, we replaced AcrB with its close homolog MexB from Pseudomonas aeruginosa. Surprisingly, we found that AcrA is promiscuous and can form a partially functional complex with MexB and TolC. The chimeric AcrA-MexB-TolC complex protected cells from sodium dodecyl sulfate, novobiocin, and ethidium bromide but failed with other known substrates of MexB. We next identified single and double mutations in AcrA and MexB that enabled the complete functional fit between AcrA, MexB, and TolC. Mutations in either the α-helical hairpin of AcrA making contact with TolC or the β-barrel domain lying on MexB improved the functional alignment between components of the complex. Our results suggest that three components of multidrug efflux pumps do not associate in an “all-or-nothing” fashion but accommodate a certain degree of flexibility. This flexibility in the association between components affects the transport efficiency of RND pumps.  相似文献   

18.
Gastrointestinal bacteria, like Escherichia coli, must remove bile acid to survive in the gut. Bile acid removal in E. coli is thought to be mediated primarily by the multidrug efflux pump, AcrB. Here, we present the structure of E. coli AcrB in complex with deoxycholate at 3.85 Å resolution. All evidence suggests that bile acid is transported out of the cell via the periplasmic vestibule of the AcrAB-TolC complex.  相似文献   

19.
The multidrug exporter AcrB is the inner membrane component of the AcrAB-TolC drug efflux system in Escherichia coli and is responsible for the resistance of this organism to a wide range of drugs. Here we describe the crystal structure of the trimeric AcrB in complex with a designed ankyrin-repeat protein (DARPin) inhibitor at 2.5-Å resolution. The three subunits of AcrB are locked in different conformations revealing distinct channels in each subunit. There seems to be remote conformational coupling between the channel access, exit, and the putative proton-translocation site, explaining how the proton motive force is used for drug export. Thus our structure suggests a transport pathway not through the central pore but through the identified channels in the individual subunits, which greatly advances our understanding of the multidrug export mechanism.  相似文献   

20.
Many transporters of Gram-negative bacteria involved in the extracellular secretion of proteins and the efflux of toxic molecules operate by forming intermembrane complexes. These complexes are proposed to span both inner and outer membranes and create a bridge across the periplasm. In this study, we analyzed interactions between the inner and outer membrane components of the tri-partite multidrug efflux pump AcrAB-TolC from Escherichia coli. We found that, once assembled, the intermembrane AcrAB-TolC complex is stable during the separation of the inner and outer membranes and subsequent purification. All three components of the complex co-purify when the affinity tag is attached to either of the proteins suggesting bi-partite interactions between AcrA, AcrB, and TolC. We show that antibiotics, the substrates of AcrAB-TolC, stabilize interactions within the complex. However, the formation of the AcrAB-TolC complex does not require an input of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号