首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 50 毫秒
1.
利用1998年第2次青藏高原野外试验中的多普勒声雷达探测、低空探测观测以及卫星观测资料对高原大气边界层内的对流现象进行分析研究。声雷达探测到了高原边界层内有强烈的对流活动。这种对流泡中心的垂直速度可超过1 m/s, 并存在尺度为1个多小时的周期性, 表现为中小尺度的有组织的湍流活动。高原边界层强对流得以发展和维持的物理机制是:强辐射加热、复杂的地形地貌形成的下垫面不均一性造成边界层斜压性、边界层内的平流活动等, 这些现象都有利于对流的发展。在这些条件的作用下, 边界层内可以产生一系列有组织的强湍流大涡旋活动, 这些大涡旋形成的热泡在向上发展的过程中有的能够发生合并, 变得更大也更为猛烈, 达到凝结高度以上可形成对流云, 并发生充分的对流混合。成云过程凝结潜热释放更有利于对流运动进一步发展, 使对流云逐步发展成更大的对流云团, 从而产生卫星云图中显示的云团发展过程。  相似文献   

2.
本文建立了一个大气对流边界层模式,构造此模式时,假设对流边界层中水平动量和热量在垂直方向上的湍流输送、扩散是由大涡与小涡组成的系统完成的。文中,用此模式作了一实例模拟,计算结果表明:模拟的结果与实测的结果相当一致。  相似文献   

3.
利用三个时段的探空加密试验资料,分别采用气块法和Richardson数法来估算青藏高原及下游地区的对流边界层和稳定边界层的高度特征。结果显示:(1)高原中部对流边界层结构的出现概率高于高原东侧及下游地区,而四川盆地稳定边界层结构的出现概率远高于高原和长江中游。(2)高原中部和东侧的对流边界层高度春季高而夏季低,其中高原中部的对流边界层高度高于高原东侧;四川盆地和长江中游的对流边界层高度冬季低、夏季高,而高原东侧的对流边界层高度的变化趋势则相反;四川盆地的对流边界层高度低于长江中游。(3)高原的稳定边界层高度春季高而夏季低;冬季四川盆地的稳定边界层高度高于高原东侧和长江中游,而夏季长江中游的稳定边界层高度高于高原东侧和四川盆地,冬夏差异导致的稳定边界层高度的变化幅度在长江中游最明显,四川盆地次之,而高原东侧最小。(4)高原东侧及下游地区的平均边界层高度的日变化具有相似的演变特征,平均边界层高度在白天高夜间低,而高原中部的平均边界层高度在日出左右较低,之后随时间逐渐增高,并在晚上达到最大值;高原的平均边界层高度的日变化振幅大于下游地区,且其日变化振幅随站点海拔高度的增加而增大。  相似文献   

4.
徐桂荣  崔春光 《湖北气象》2009,28(2):112-118
利用2007年12月10-24日在红原、温江和宜昌同步观测的3小时加密探空资料,分析了青藏高原东部及下游关键区大气边界层位温廓线日变化特征,以及对流边界层高度和稳定边界层高度的变化特征.分析结果表明,不同地形位温廓线具有相同的日变化特征,对流边界层在白天出现和发展,而稳定边界层在夜间出现和发展;对流边界层的发展史和发展高度与海拔高度有关,高海拔地区对流边界层的发展史较短但发展高度较高,而低海拔地区对流边界层的发展史较长但发展高度较低;稳定边界层的发展史和发展高度也与海拔高度有关,高海拔地区稳定边界层的发展史较长且发展高度较高,而低海拔地区稳定边界层的发展史较短且发展高度较低;对流边界层的最大发展高度多出现在地方时17时,而稳定边界层的最大发展高度多出现在地方时02时;红原、温江和宜昌的对流边界层高度分别可达4 930 m、1 000 m和710 m.而其稳定边界层高度分别可达1 100 m、920 m和650 m.  相似文献   

5.
大气对流边界层发展的模拟研究   总被引:4,自引:0,他引:4  
罗涛  袁仁民  孙鉴泞 《高原气象》2006,25(6):1001-1007
室内水槽模拟是大气边界层研究的一种重要手段。利用室内模拟水槽对大气边界层的发展进行了模拟,通过处理平均温度廓线和光斑图像得到了对流边界层顶部位置h2和边界层高度zi。结果表明,不同测量方法得到的结果一致性很好,与实际大气的边界层发展情况也较为接近。同时,根据试验情况确定初始条件和边界条件,使用边界层参数化模型进行了数值模拟,其结果与室内模拟的结果也较吻合。  相似文献   

6.
论边界层中的大气扩散PDF模式   总被引:3,自引:0,他引:3       下载免费PDF全文
基于大气扩散K理论,用作为风速脉动均方差和拉氏时间尺度函数的湍流交换系数,得到了直接利用风速脉动几率密度而不用扩散参数的大气扩散PDF模式。分别研究了对流边界层上升气流区与下降区垂直速度的统计特征,求得双正态PDF模式。在给定CBL自身参数如对流特征速度w*,顶高hi和源高度上的平均风速时,该模式计算出的无量纲浓度分布与室内外测试结果一致。  相似文献   

7.
青藏高原对我国东部地区的天气和气候、亚洲季风乃至全球大气环流和天气气候都有重要影响,而高原大气边界层作为连接高原独特下垫面和自由大气的桥梁,在上述影响过程中扮演了重要作用。高原大气边界层观测资料的匮乏严重制约着青藏高原天气与气候研究。本文回顾了青藏高原大气边界层结构特征的研究历史,将这些成果进行了总结和分析,并对目前研究中存在的不足之处进行了探讨。  相似文献   

8.
青藏高原西部改则地区大气边界层特征   总被引:27,自引:5,他引:27  
利用第二次青藏高原大气科学考察试验(TIPEX)改则站大气边界层物理观测资料,着重揭示了该地区边界层结构的观测事实,尤其是近地层风、温、湿特征和土壤温、湿特征。主要结果如下:(1)边界层内风速随高度呈多极值分布,即使在白天混合层内,空气上下混合也较差;(2)边界层内白天温度递减率较大,可达到1.6 ℃/100 m;(3)白天,边界层常出现逆湿现象。  相似文献   

9.
青藏高原大气边界层湍流特征量分析   总被引:22,自引:10,他引:12  
苗曼倩  季劲钧 《高原气象》1998,17(4):356-363
采用1979年青藏高原气象科学实验资料,研究高原陆面上总体湍流送系数CD和CH的特征及边界层高度受高原地形的影响。结果表明用廓线法计算的高原上局地的CD和CH值比同样粗糙度长度条件下平原地区的值大得多,而且日较差也大于平原地区。  相似文献   

10.
利用第二次青藏高原(下称高原)综合科考\"地-气相互作用与气候效应\"立体综合加强期观测试验2019年5月、7月和10月珠峰、林芝、那曲和狮泉河站点的探空资料及ERA5再分析资料.探讨在西风南支与高原季风不同风场控制下高原大气边界层结构特征及其与感热潜热通量的关系.结果表明:西风南支风场下各站点大气边界层高度较高原夏季风风...  相似文献   

11.
青藏高原东部及下游地区冬季边界层的观测分析   总被引:2,自引:3,他引:2  
利用2007年12月的加密探空资料, 对高原东部及其下游地区的边界层结构和高原东部边界层变化对下游大气的影响进行了分析。结果表明, 冬季青藏高原东部夜间近地面逆温层可以发展到平均500 m的高度, 白天混合层可以发展到平均2000 m的高度。白天混合层内水汽和风速混合十分均匀, 在混合层发展成熟时存在十分深厚的逆湿层。冬季青藏高原下游的四川盆地, 边界层内温度日较差小, 夜间逆温层把大量地表水汽截留在近地层, 日出前近地层水汽容易达到饱和。白天, 混合层在中午发展成熟, 平均高度只有300 m。四川盆地对流层下部存在非常强的逆温层, 该逆温层是青藏高原抬升地表加热和冬季盛行西风气流形成的, 逆温层变化是青藏高原东部边界层温度日变化和局地西风变化的共同结果。逆温层显著改变大气动量、 热量和水汽的垂直分布。与对流层下部逆温相联系的中层云对辐射的影响是造成四川盆地温度日较差和混合层高度变化的原因。  相似文献   

12.
采用WRF(Weather Research and Forecasting)模式4种边界层参数化方案对青藏高原那曲地区边界层特征进行了数值模拟,并利用\"第三次青藏高原大气科学试验\"在青藏高原那曲地区5个站点的观测资料对模拟结果进行验证,分析不同参数化方案在那曲地区的适用性。研究表明,YSU、MYJ、ACM2和BouLac方案对2 m气温和地表温度的模拟偏低。BouLac方案模拟的地表温度偏差较小。通过对能量平衡各分量的对比分析发现,温度模拟偏低可能是向下长波辐射模拟偏低以及感热通量和潜热通量交换过强导致的。对于边界层风、位温和相对湿度垂直结构的模拟,局地方案的模拟效果均优于非局地方案。BouLac方案对那曲地区近地层温度、边界层内位温和相对湿度的垂直分布模拟效果较好。   相似文献   

13.
青藏高原大气科学试验研究进展   总被引:24,自引:4,他引:24       下载免费PDF全文
该文对半个世纪以来, 我国气象工作者在青藏高原研究, 特别是1979年和1998年两次大规模青藏高原大气科学试验科学成果进行了全面回顾, 给出近年来青藏高原研究许多有重要价值的研究成果, 可概要地归纳为以下几个方面:两次青藏高原大气科学试验在青藏高原边界层研究、对流特征研究方面取得新进展, 发现许多新的观测事实。证明青藏高原也可能是低频振荡源地。试验发现青藏高原摩擦层风的Ekman螺线及热力混合层特征, 发现青藏高原上对流边界层高度可达2200 m, 湍流边界层高度比平原地区明显偏高; 研究给出了青藏高原近地层与边界层动力、热力结构及其湍流、对流云特征可构成青藏高原地区边界层的综合物理图像。追踪分析研究发现, 连续成串从青藏高原中部或东部发生、发展的对流云团族呈显著东移的特征, 认为长江暴雨洪水的初始对流云系统可追溯到青藏高原; 研究发现, 在适当的云天条件下, 在青藏高原上可观测到极大的太阳总辐射、有效辐射和地表净辐射。青藏高原地面反照率的变化产生热源、热汇的区域影响效应, 这种源汇带来季节性和区域性的变化将进一步影响到大气中长波波形的季节尺度变化, 研究还强调指出青藏高原雪盖的年度变化的反馈作用表现对行星尺度环流特征的影响, 在热带洋面也产生对SST异常的相互作用与影响; 青藏高原与亚洲季风系统影响研究取得显著进展; 研究发现, 青藏高原“感热气泵” (SHAP) 的有效工作导致了青藏高原地区由冬到夏大气环流的突变及南亚高压的突然北跳, 并维持着亚洲季风期; 研究揭示出青藏高原周边“大三角”区域是影响我国长江中下游暴雨的水汽输送关键区, 揭示在青藏高原地区及其东部水汽输送的“转运站”特征。水汽流向东的“转运”效应对长江梅雨期洪涝形成甚为重要; 青藏高原大气物质输送及其臭氧异常特征研究取得进展, 研究发现夏季在青藏高原上大气臭氧总量有一明显的低值中心存在, 并且发现拉萨的臭氧递减趋势比我国东部同纬度地区大, 而拉萨位于青藏高原臭氧低值中心的区域。  相似文献   

14.
周文  杨胜朋  蒋熹  郭启云 《气象学报》2018,76(1):117-133
以往关于青藏高原边界层的研究都是基于个别站点的常规观测,对青藏高原边界层的整体性认识受限。GPS掩星资料具有测量精度高和垂直分辨率高的特性,其廓线中含有大量有价值的边界层信息。利用2007—2013年COSMIC掩星资料,通过计算大气折射率最小梯度来确定边界层高度,并用无线电探空资料对结果进行了检验。在此基础上,对青藏高原地区边界层高度的特征及其形成机制展开了研究,比较了COSMIC掩星确定的边界层高度和ERA-Int的差别,讨论了最小梯度法用于边界层研究的不确定性。结果表明:青藏高原上COSMIC掩星和无线电探空数据检测的边界层高度相关系数为0.786,平均值偏差为0.049 km,均方根误差为0.363 km,COSMIC掩星数据检测的边界层高度和无线电探空的结果非常接近。青藏高原上边界层高度呈现西高东低的分布特征,高原中西部边界层高度主要为1.8—2.3 km,而高原东部边界层为1.4—1.8 km,最大值在高原西南部。青藏高原地区边界层有明显的季节差异,冬季高原上大部分地区边界层高度超过2.0 km;春季大部分地区高度降低,但在受印度季风影响的高原南部有明显的抬升,最大值可超过3.0 km;夏季高原上边界层高度开始升高,大部分地区超过1.8 km;秋季又开始回落。青藏高原以北塔克拉玛干沙漠和高原以南印度季风活动区是两个高值区,北部的沙漠地区边界层高度在夏季最高,南部印度季风活动区在季风爆发前(4月)达到全年最大值。青藏高原中西部地区有水平风辐合以及广泛的上升运动,为边界层的发展提供了动力条件,而东部的下沉运动对边界层的发展有抑制作用。青藏高原边界层各个季节的空间分布与地表感热通量分布一致。COSMIC掩星资料确定的边界层高度和ERA-Int相比,空间分布基本一致但ERA-Int边界层高度明显偏低。当有系统性强逆温存在的时候,或者云中液态水或冰水含量较大时,用最小梯度法检测的边界层高度不确定性增加。   相似文献   

15.
李博  杨柳  唐世浩 《气象学报》2018,76(6):983-995
利用2010-2014年静止气象卫星FY-2E的红外TBB资料,分析了夏季青藏高原(高原)及周围地区对流的气候特征。分析表明,5月,高原最主要的对流发生在东部边缘。6月,随着亚洲夏季风爆发,最强的对流(强对流)发生在高原的东南侧。7-8月,强盛的西南风给高原中东部部分地区带来丰沛的水汽,高原的东南部形成一条对流(强对流)活跃带。在高原西部,对流发生频率大于6%的区域出现在西部南麓的时间约为37候,并于7月底-8月初到达最北。在高原中部,对流(强对流)开始活跃的时间为6月上旬(中旬),维持整个盛夏,并分别经历3次向北推进,最北约到达34°N。在高原东部,5月底开始对流都处于相对活跃期,有3次(两次)对流(强对流)的北进。高原对流(强对流)发生频率存在两个季节内变率大值区,分别位于高原中南部雅鲁藏布江中段和高原东南部西藏、青海、四川三省交界处。对流发生频率的第一模态主要是高原东南部和南部的印度季风区对流的反向模态,第二模态则体现了高原西部和印度大陆80°E以西地区与南亚大陆80°E以东地区的对流发生频率的三极型变化。   相似文献   

16.
    
Plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focusis on highly-buoyant plumes that loft near or become trapped in the CBL capping inversion and resistdownward mixing. Such plumes are defined by dimensionless buoyancy fluxes F* 0.1, where F* = Fb/(U w*2 zi), Fb is the stack buoyancy flux,U is the mean wind speed, w* is the convective velocity scale, and zi is the CBL depth. The aim is to obtain statistically-reliable mean (C) and root-mean-square (rms, c) concentration fields as a function of F* and the dimensionless distance X = w*x/(U zi), where x is the distance downstream of the source.The experiments reveal the following mainresults: (1) For 3 X 4and F* 0.1, the crosswind-integrated concentration (CWIC) fields exhibit distinctly uniform profiles below zi with a CWIC maximum aloft, in contrast to the nonuniform profiles obtained earlier by Willis and Deardorff. (2) The lateral dispersion (y) variation with X is consistent with Taylor's theory for * 0.1 and a buoyancy-enhanced dispersion, y/zi F*1/3X2/3, forF* = 0.2 and 0.4. (3) The entrapment, the plume fraction above zi, has a mean (E) that follows a systematic variationwith X and F*, and a variability (e/E) that is broad ( 0.3 to 2) near the source but subsides to 0.25 far downstream. (4) Vertical profiles of the concentration fluctuation intensity (c/C) are uniform for z < zi and X > 1.5, but exhibit significant increases: (a) at the surface and close to the source (X 1.5), and(b) in the entrainment zone. (5) The cumulative distribution functions (CDFs) of the scaled concentration fluctuations (c/c) separate into mixed-layer and entrainment-layer CDFs for X 2, with the mixed-layer group collapsing to a single distribution independent of z.These are the first experiments to obtain all components of the lateral and vertical dispersion parameters (rms meander, relative dispersion, total dispersion) for continuous buoyant releases in a convection tank. They also are the first tank experiments to demonstrate agreement with field observations of: (1) the scaled ground-level concentration along the plume centreline, and (2) the dimensionless lateral dispersion _y/z_i of buoyant plumes.  相似文献   

17.
赵鸣 《大气科学》1992,16(1):18-28
基于近年来对自由对流和稳定边界层湍流交换特征的研究,求解边界层运动方程,得到这两种层结下边界层风的解析表达式.所得廓线与边界层特性参数符合观测特征.还求出了这二种层结下边界层顶抽吸速度的解析表达及其与某些参数的关系.结果表明,抽吸速度与层结有关,其特征可从物理上加以解释.  相似文献   

18.
A laboratory convection tank has been established following thepioneering work of Willis and Deardorff, but with many improvements and enhancements thattake advantage of modern technology. The main emphasis in the current design was toprovide the ability to conduct a virtually unlimited number of realizations under essentiallyidentical conditions in order to obtain reliable statistics on the dispersion of plumes and puffsreleased within the simulated atmospheric convective boundary layer. Described herein is the tankitself and its auxiliary systems, including a laser-induced-fluorescence and video-imaging system for makingnon-intrusive, full-field measurements of concentrations, and the interfacing of varioussubsystems with a master controller that automates essentially all operation and measurement functions.The current system provides unprecedented resolution, control, and data volumes. Exampleresults are presented from two types of releases: continuous plumes and instantaneous puffs.These data sets clearly show penetration of the highly buoyant plumes and puffs into theinversion above the convective boundary layer, gravity spreading within the inversion, andrapid diffusion within the mixed layer. They also show extreme `spottiness' in the instantaneousconcentration cross-sections.  相似文献   

19.
刘辉志  王雷  杜群 《大气科学》2018,42(4):823-832
本文总结了2012~2017年中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室大气边界层物理研究的最新进展,主要包括不同下垫面(城市、青藏高原、草原、沙漠、湖泊、海洋等)大气边界层观测实验、大气湍流和阵风相干结构的理论研究以及大气数值模拟的参数化改进等,同时对未来几年内大气边界层物理的发展方向做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号