首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, it was observed that water droplets suspended in a nematic liquid crystal form linear chains [Poulin et al., Science 275, 1770 (1997)]. The chaining occurs, e.g., in a large nematic drop with homeotropic boundary conditions at all the surfaces. Between each pair of water droplets a point defect in the liquid crystalline order was found in accordance with topological constraints. This point defect causes a repulsion between the water droplets. In our numerical investigation we limit ourselves to a chain of two droplets. For such a complex geometry we use the method of finite elements to minimize the Frank free energy. We confirm an experimental observation that the distance d of the point defect from the surface of a water droplet scales with the radius r of the droplet like .When the water droplets are moved apart, we find that the point defect does not stay in the middle between the droplets, but rather forms a dipole with one of them. This confirms a theoretical model for the chaining. Analogies to a second order phase transition are drawn. We also find the dipole when one water droplet is suspended in a bipolar nematic drop with two boojums, i.e., surface defects at the outer boundary. Finally, we present a configuration where two droplets repel each other without a defect between them. Received 11 December 1998  相似文献   

2.
Aqueous micellar solutions of ionic/neutral block copolymers have been studied by light scattering, small angle neutron scattering and small angle X-ray scattering. We made use of a polymer comprised of a short hydrophobic block (polyethylene-propylene) PEP and of a long polyelectrolytic block (polystyrene-sulfonate) PSSNa which has been shown previously to micellize in water. The apparent polydispersity of these micelles is studied in detail, showing the existence of a few large aggregates coexisting with the population of micelles. Solutions of micelles are found to order above some threshold in polymer concentration. The order is liquid-like, as demonstrated by the evolution with concentration of the peak observed in the structure factor (), and the degree of order is found to be identical over a large range of concentrations (up to 20 wt%). Consistent values of the aggregation number of the micelles are found by independent methods. The effect of salt addition on the order is found to be weak. Received: 19 June 1997 / Received in final form: 4 September 1997 / Accepted: 9 October 1997  相似文献   

3.
Molecular dynamics simulations (MD) of dynamical properties of molten binary Ag-Cu alloy is presented at various temperature above the eutetic temperature. Atoms in the system have been modelled through an interatomic Lennard-Jones potential interaction. The structure, through the effective pair distribution function allows to determine the Enksog collision frequency as well as the coordination of atoms in the first shell. The surface traction, which is the force per unit area between the species shows a long separation oscillation about the value zero, while the collision frequency of pairs of atoms increase with increasing temperature. The adhesion energy between components found to be 3.4178 J/m2. In agreement with theory, we found a decrease in surface tension of Ag-Cu alloy as temperature increases. Separation of atoms pairs in the first shell might be responsible for a non linear relationship found between temperature and coordination number in present calculations.  相似文献   

4.
We have studied fluid-solid phase transformations of materials interacting via the Dzugutov potential (Phys. Rev. A 46, R2984 (1992)). We present evidence from molecular dynamics simulations that this interaction does not exhibit a liquid phase. If a mixed potential (r) is formed by a linear superposition of and the Lennard-Jones potential , then the liquid phase disappears at a fraction of less than 60% . Received 15 June 1998 and Received in final form 8 July 1999  相似文献   

5.
The freezing transition of a network model for tensionless membranes confined to two dimensions is investigated by Monte Carlo simulations and scaling arguments. In this model, a freezing transition is induced by reducing the tether length. Translational and bond-orientational order parameters and elastic constants are determined as a function of the tether length. A finite-size scaling analysis is used to show that the crystal melts via successive dislocation and disclination unbinding transitions, in qualitative agreement with the predictions of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. The hexatic phase is found to be stable over only a very small interval of tether lengths. Received 4 June 1999 and Revised in final form 1 September 1999  相似文献   

6.
We have theoretically investigated chevron formation in smectic C materials and the transformation of this chevron structure to a tilted layer structure as the cell is sheared. We find a series of transition temperatures at which the behaviour of the cell critically changes. As the cell is cooled from the smectic A phase past the first critical temperature there is a second order transition which forms two tilted layer states with lower energy than the smectic A bookshelf structure. Although these low energy tilted structures exist the bookshelf structure is the stable state for zero shear. However, upon further cooling this bookshelf structure becomes unstable to the formation of a chevron state. Now when the cell is sheared the chevron structure smoothly transforms into the tilted layer structure. As each further critical temperature is passed an additional multiple chevron solution is formed which although a high energy, unstable state may be observed transiently. For sufficiently low temperatures the transition from chevron to tilted layer becomes first order. This first order transition occurs as the chevron interface merges with the surface alignment region to form the tilted layer structure. Received 28 December 1998 and Received in final form 8 April 1999  相似文献   

7.
The behaviour of the antiferroelectric SmCA liquid crystal phase under applied electric field is discussed theoretically. The phase diagram involving the SmA, SmCA and SmC A * phases is worked out and shown to exhibit a Lifshitz critical point. The deformation of the bilayer structures induced by the field transforms the SmCA phases into a ferrielectric phase whose specific configuration is described. Received: 23 October 1997 / Revised: 8 April 1998 / Accepted: 14 July 1998  相似文献   

8.
We study the director field around a spherical particle immersed in a uniformly aligned nematic liquid crystal and assume that the molecules prefer a homeotropic orientation at the surface of the particle. Three structures are possible: a dipole, a Saturn-ring, and a surface-ring configuration, which we investigate by numerically minimizing the Frank free energy supplemented by a magnetic-field and a surface term. In the dipole configuration, which is the absolutely stable structure for micron-size particles and sufficiently strong surface anchoring, a twist transition is found and analyzed. We show that a transition from the dipole to the Saturn ring configuration is induced by either decreasing the particle size or by applying a magnetic field. The effect of metastability and the occurrence of hysteresis in connection with a magnetic field are discussed. The surface-ring configuration appears when the surface-anchoring strength W is reduced. It is also favored by a large saddle-splay constant K24. A comparison with recent experiments [#!itapdb:Poulin1997!#,#!itapdb:Poulin1998!#] gives a lower bound for W, i.e., for the interface of water and pentylcyanobiphenyl (5CB) in the presence of the surfactant sodium dodecyl sulfate. Received 2 November 1998  相似文献   

9.
We propose complements to the Renn model of the liquid crystal TGBC* phase. We argue that the rotation angle per helislab is spontaneously in the radian range, not too small to limit the energy cost of the twist grain boundaries between the helislabs, not too large to preserve the double twisting efficiency. Taking the elastic interactions between the helislabs into account, we show that the structure may undergo two different lock-ins, provided that the uncontrolled interactions at the sample surfaces are small enough. First, for appropriate values of the elastic constants, an angular lock-in may fix the rotation angle per helislab at values exactly commensurate to π. Three characteristic lengths of the TGBC* phase, the TGB period and the thicknesses of both the smectic blocks and of the helislabs are then commensurate to one another, with moreover, integer ratios at the most efficient commensurabilities. The TGBC* phase could thus exist in several versions, incommensurate and commensurate, according to the steps of a restricted Devil's staircase. A second elastic lock-in should then arise in the commensurate TGBC* phases, to set the arrays of disclination lines between the helislabs in simple rectangular lattices, arranged in a helical manner. Being placed right behind one another, the disclination lines then coincide when observed along the TGB axis. This could explain the typical textures with square or hexagonal grids, observed in oriented samples. The commensurability of the TGBC* phases could be analyzed with X-ray scattering experiments in the same manner as already reported for the TGBC phase. Received 30 November 1999 and Received in final form 5 May 2000  相似文献   

10.
We have used the density functional theory to study the effect of molecular elongation on the isotropic-nematic, isotropic-smectic A and nematic-smectic A phase transitions of a fluid of molecules interacting via the Gay-Berne intermolecular potential. We have considered a range of length-to-width parameter 3.0 ⩽ x0 ⩽ 4.0 in steps of 0.2 at different densities and temperatures. Pair correlation functions needed as input information in density functional theory are calculated using the Percus-Yevick integral equation theory. Within the small range of elongation, the phase diagram shows significant changes. The fluid at low temperature is found to freeze directly from isotropic to smectic A phase for all the values of x0 considered by us on increasing the density while the nematic phase stabilizes in between isotropic and smectic A phases only at high temperatures and densities. Both isotropic-nematic and nematic-smectic A transition density and pressure are found to decrease as we increase x0. The phase diagram obtained is compared with computer simulation result of the same model potential and is found to be in good qualitative agreement.  相似文献   

11.
By means of molecular dynamics computer simulations we investigate the out of equilibrium relaxation dynamics of a simple glass former, a binary Lennard-Jones system, after a quench to low temperatures. We find that one-time quantities, such as the energy or the structure factor, show only a weak time dependence. By comparing the out of equilibrium structure factor with equilibrium data we find evidence that during the aging process the system remains in that part of phase space that mode-coupling theory classifies as liquid like. Two-times correlation functions show a strong time and waiting time dependence. For large and times corresponding to the early -relaxation regime the correlators approach the Edwards-Anderson value by means of a power-law in time. For large but fixed values of the relaxation dynamics in the -relaxation regime seems to be independent of the observable and temperature. The -relaxation shows a power-law dependence on time with an exponent which is independent of but depends on the observable. We find that at long times the correlation functions can be expressed as and compute the function h(t). This function is found to show a t-dependence which is a bit stronger than a logarithm and to depend on the observable considered. If the system is quenched to very low temperatures the relaxation dynamics at long times shows fast drops as a function of time. We relate these drops to relatively local rearrangements in which part of the sample relaxes its stress by a collective motion of 50-100 particles. Finally we discuss our measurements of the time dependent response function. We find that at long times the correlation functions and the response are not related by the usual fluctuation dissipation theorem but that this relation is similar to the one found for spin glasses with one step replica symmetry breaking. Received 17 May 1999  相似文献   

12.
C. Dasgupta 《Phase Transitions》2013,86(4-5):441-450
The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.  相似文献   

13.
14.
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay–Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus–Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic–nematic phase transition parameters and presented the temperature–density and pressure–temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.  相似文献   

15.
The Frank elasticity constants which describe splay (K 1), twist (K 2), and bend (K 3) distortion modes are investigated for 4-n-pentyl-4'-cyanobiphenyl (5CB) in the nematic liquid crystal. The calculations rest on statistical-mechanical approaches where the absolute values of K i (i=1,2,3) are dependent on the direct correlation function (DCF) of the corresponding nematic state. The DCF was determined using the pair correlation function by solving the Ornstein-Zernike equation. The pair correlation function, in turn, was obtained from molecular dynamics (MD) trajectory. Three different approaches for calculations of the elasticity constants were employed based on different level of approximation about the orientational order and molecular correlations. The best agreement with experimental values of elasticity constants was obtained in a model where the full orientational distribution function was used. In addition we have investigated the approximation about spherical distribution of the intermolecular vectors in the nematic phase, often used in derivation of various mean-field theories and employed here for the construction of the DCF. We found that this assumption is not strictly valid, in particular a strong deviation from the isotropic distribution is observed for short intermolecular distances. Received 22 March 2000 and Received in final form 9 June 2000  相似文献   

16.
It is shown that quasi Bernoulli fluctuations, which appear at a morphological phase transition, can be considered as a statistical basis for multifractal processes with constant multifractal specific heat in a wide class of random and disordered systems. This class contains at least following processes: percolation, diffusion-limited aggregation and corrosion, Lorenz like attractors, and mesoscopic systems with Anderson transition. Received: 14 April 1998 / Revised and Accepted: 20 April 1998  相似文献   

17.
In this article, we present a universal relationship between the glass transition temperature and the local glass structure. The derivation of the simplest expression of this relationship and some comparisons with experimental values have already been reported in a recent letter. We give here the analytical expression of the parameter of the Gibbs-Di Marzio equation and also new experimental probes for the validity of the relationship, especially in low modified binary glasses. The influence of medium range order is presented and the unusual behavior of in binary and systems explained by the presence of modifier-rich clusters (denoted by doublets). Received: 3 September 1997 / Received in final form and accepted: 17 November 1997  相似文献   

18.
Free energy of semiflexible polymers and structure of interfaces   总被引:1,自引:0,他引:1  
The free energy of semiflexible polymers is calculated as a functional of the compositional scalar order parameter and the orientational order parameter of second-rank tensor Sij on the basis of a microscopic model of wormlike chains with variable segment lengths. We use a density functional theory and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series of .The interaction term of the free energy is derived with a random phase approximation. For the rigid rod limit, the nematic-isotropic transition point is given by , N and w being the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region. Received: 28 May 1998 / Revised: 12 August 1998 / Accepted: 8 September 1998  相似文献   

19.
Using field-theoretic methods, we calculate the internal energy for the One-Component Plasma (OCP). We go beyond the recent calculation by Brilliantov [N. Brilliantov, Contrib. Plasma Phys. 38, 489 (1998)] by including non-Gaussian terms. We show that, for the whole range of the plasma parameter , the effect of the higher-order terms is small and that the final result is not improved relative to the Gaussian theory when compared to simulations. Received 12 April 1999  相似文献   

20.
R. Ruberto  M.P. Tosi 《Physics letters. A》2009,373(11):1083-1088
We report molecular-dynamics simulations of self-diffusion and structure in a pseudoclassical model of liquid and crystalline ZnCl2 over a wide region of the pressure-temperature plane. The model parameters are adjusted to reproduce a liquid structure of corner-sharing ZnCl4 tetrahedra at the standard freezing point and the measured diffusion coefficients as functions of temperature on the sfp isobar. We find that compression first weakens the intermediate-range order of the melt near freezing into a fourfold-coordinated crystal structure, and then drives at higher temperatures a novel liquid-liquid transition consisting of two broad steps: (i) a transition in which the Zn atoms start to leave their tetrahedral cages, followed by (ii) a structural transition from a covalent network of Cl atoms to a dissociated ionic liquid which then freezes into a sixfold-coordinated crystal. Good agreement is found with data from X-ray diffraction experiments under pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号