首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

2.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

3.
采用固定化微生物技术深度处理煤间接制油二级反渗透浓水,考察固定化耐盐复合菌对二级反渗透浓水中COD的去除效果。结果表明,初始COD为86.1 mg/L的二级反渗透浓水经由p H为6.98、温度35℃、固定化耐盐复合菌投加质量分数为5%的优化条件下反应72 h,废水中的COD降至38.4 mg/L,去除率为55.40%。采用活性污泥法、固定化耐盐复合菌和"固定化耐盐复合菌+活性污泥法"组合的方式进行对比实验,3种工艺中COD去除率分别为41.81%、54.59%和55.63%。固定化微生物技术可以强化活性污泥法的处理效果,二者之间有良好的协同作用,可以有效的深度处理高盐含量的煤间接制油二级反渗透浓水。  相似文献   

4.
采用O_3/H_2O_2高级氧化工艺深度处理胞苷酸企业二级生化出水,考察了pH、H_2O_2用量、O_3浓度、反应时间等因素对深度处理效果的影响,探讨了有机磷矿化反应的动力学。结果表明,当废水有机磷质量浓度约为56 mg/L,COD约为640 mg/L时,适宜的反应条件为:pH 8.5,H_2O_2投加量20 mmol/L,O_3质量浓度12 mg/L,反应时间90 min;有机磷矿化反应遵循表观一级动力学,动力学常数为0.024 7 min-1。优化条件下,有机磷矿化率和COD去除率分别为91.6%和56.8%。O_3/H_2O_2氧化出水经混凝沉淀处理后,TP和COD符合纳管排放要求。  相似文献   

5.
以铁板为阳极、不锈钢板为阴极,采取外加H_2O_2的方式构建电芬顿体系,处理石化废水反渗透浓水,以降低投资,减少污泥量,解决阴极产生H_2O_2低效率的问题。考察了H_2O_2投加量、pH、电流密度,特别是通气条件等因素对废水处理效果的影响。研究发现,曝气可有效强化电芬顿过程,显著提高有机物去除率,改善污泥沉降效果。在H_2O_2投加浓度150mg/L、p H=4.0、电流密度为10m A/cm~2、空气曝气量为120L/h的条件下,反应仅10min,COD去除率即可达57.1%,继续反应至60min,COD去除率最大可达66.7%,出水COD20mg/L,满足北京市《水污染物综合排放标准》(DB 11/307—2013)中A类排放限值。该电芬顿法在短时间内即可高效处理石化废水反渗透浓水,污染物去除率显著高于相关研究结果,具有广阔的应用前景。  相似文献   

6.
采用浸渍法将Cu O、Fe_2O_3负载在γ-Al_2O_3表面,制备高活性臭氧催化氧化催化剂,通过N_2吸附脱附曲线,X射线衍射、扫描电镜、X射线荧光光谱等方法对催化剂性能进行表征。与Cu O-Fe_2O_3/γ-Al_2O_3/O_3、H_2O_2/O_3、γ-Al_2O_3/O_3等工艺相比,采用Cu O-Fe_2O_(3/)γ-Al_2O_3/H_2O_2/O_3工艺降解制药二级生化出水效果最为明显,较高的催化氧化效率主要归功于H_2O_2的诱导作用和催化剂的催化作用的双重作用加速臭氧生成更多·OH。考察废水中COD去除率及影响降解的因素,包括催化剂投加量、p H、双氧水投加量、臭氧流量等,实验结果显示在催化剂投加量2g/L、废水p H为9、双氧水投加量3.6mg/L、臭氧流量1.0L/min条件下,COD去除率达到62.96%。催化剂循环使用10次后,COD去除率仍然可达到58%以上,并且金属离子浸出较少,其结构稳定。通过自由基捕获剂测试,探讨该催化氧化过程遵循自由基反应机理。  相似文献   

7.
O_3-H_2O_2与活性炭负载TiO_2预处理晚期垃圾渗滤液   总被引:1,自引:0,他引:1  
采用O_3-H_2O_2高级氧化结合催化O_3氧化技术对晚期垃圾渗滤液进行预处理,考察了颗粒活性炭负载二氧化钛(TiO_2/GAC)催化剂的催化效果,并研究了反应体系中O_3和H_2O_2投加量以及pH等因素对COD去除效果的影响.结果表明,当O_3投加量为1.8 g·L~(-1),H_2O_2投加量为0.27 g·L~(-1),催化剂投加质量分数为15%时,反应90min的COD去除率达到40%;对出水调节pH≥11.4,经过沉淀后,COD去除率提高到58%.出水澄清透明,BOD5/COD从<0.1提高到0.26.水质得到较大改善,可生化性明显提高,为后续的生化处理工艺起到较好的预处理作用.  相似文献   

8.
某农药厂利用O_3-H_2O_2取代Fe/C-H_2O_2氧化工艺对农药废水进行预处理,研究了O_3和H_2O_2投加量分别对O_3-H_2O_2和Fe/C-H_2O_2去除COD效果的影响,分析并探讨O_3-H_2O_2预处理对抑制好氧池由丝状菌导致的污泥膨胀的途径。结果表明,O_3-H_2O_2和Fe/C-H_2O_2工艺处理后出水COD浓度从33000 mg/L分别下降为11000 mg/L和5700 mg/L,Fe/C-H_2O_2预处理对COD去除效果更好;可生化性试验结果表明O_3-H_2O_2和Fe/C-H_2O_2预处理后废水B/C比分别为0.64和0.48;污泥镜检结果表明O_3-H_2O_2工艺提高废水可生化性能够有效抑制好氧池丝状菌生长,防止污泥膨胀产生。  相似文献   

9.
本文考察了FeOOH催化H_2O_2/O_3氧化处理化工废水生化尾水的效果,结果表明:γ-FeOOH/H_2O_2/O_3构成的多元催化氧化体系,比γ-FeOOH/O_3及O_3氧化体系效率更高。FeOOH提高了H_2O_2/O_3氧化TOC的能力,促进了反应过程中·OH的产生。在γ-FeOOH投加量为0.5 g/L,H_2O_2投加量为50 mg/L,O_3投加量为5 mg/min,反应60 min后,TOC去除率达50%以上。  相似文献   

10.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

11.
利用改性沸石负载Fe_3O_4活化H_2O_2非均相Fenton体系氧化降解有机污染物亚甲基蓝。考察了催化剂改性沸石负载Fe_3O_4投加量、溶液初始pH和H_2O_2初始浓度对亚甲基蓝降解效果的影响,进而讨论Fe_3O_4/改性沸石-H_2O_2非均相Fenton体系的催化机理。结果表明,当催化剂投加量为2.40 g/L,初始溶液pH为5.33,H_2O_2浓度为5.93 mmol/L时,反应30 min后,9.60 mol/L的亚甲基蓝去除率可达到98.52%。通过自由基捕获剂抗坏血酸和羟基自由基捕获剂甲醇,证明了Fe_3O_4/改性沸石-H_2O_2体系的氧化物种为羟基自由基和过氧自由基。  相似文献   

12.
本文采用UV/H_2O_2实验室装置对苯酚人工配水进行处理试验研究,试验结果表明:在UV灯功率为500W,pH值7.0左右,H_2O_2:COD摩尔比为2:1,反应240min后COD由1045mg/L降至小于20mg/L,去除率高达99%以上。考察了不同pH(4.0,7.0和9.0),双氧水投加量与投加方式(一次投加和多次投加),以及氯离子浓度(0mg/L,2000mg/L和10000mg/L)对UV效果的影响,发现pH偏中碱性,H_2O_2:COD摩尔比2:1且一次性投加有利于COD的降解,而正常情况氯离子浓度对UV/H_2O_2的效果影响不明显。  相似文献   

13.
采用臭氧催化氧化工艺对二级生化出水中难降解有机物进行深度处理试验。结果表明,投加H_2O_2作为催化剂能明显提高出水COD去除率,当H_2O_2投加量为0. 10 m L/L,反应时间为5min时,出水COD值可从93 mg/L降至47 mg/L,比臭氧率R值达到0. 92,臭氧利用率相对最高且该条件下COD去除率达49%。  相似文献   

14.
为考察O_3氧化对煤化工废水中有机物的去除效果,采用O_3、 O_3/H_2O_2和O_3/H_2O_2/催化氧化3种工艺深度处理煤基合成油废水。在进水水质和O_3流量相同条件下,对COD和TOC去除效果依次为:O_3/H_2O_2/催化氧化工艺 O_3/H_2O_2氧化工艺单纯O_3氧化工艺。在优化试验中,当进水COD和TOC质量浓度分别为70.90和27.00mg/L, O_3气体流量为40 mL/min, H_2O_2投加量为30 mg/L,催化剂投加量为300 g/L,连续反应60 min的条件下,O_3、 O_3/H_2O_2、 O_3/H_2O_2/催化氧化3种工艺对COD和TOC的去除率分别为14.10%和23.13%、 46.12%和14.26%、26.85%和51.48%。O_3/H_2O_2/催化氧化工艺出水COD的质量浓度为38.20 mg/L,满足GB/T 19923—2005《城市污水再生利用工业用水水质》中冷却用水和锅炉补给水要求。  相似文献   

15.
以混凝-铁炭微电解-芬顿高级氧化工艺对垃圾渗滤液进行深度处理。探究了混凝剂投加量、微电解时间及H_2O_2投加量等因素对COD去除效果的影响。在PAC投加量为1 400 mg/L,PAM投加量为800 mg/L,铁炭微电解时间为3 h,H_2O_2的投加量为4 mL/L的条件下,垃圾渗滤液的COD整体去除率在84.7%左右,溶液的色度明显减小,有利于后续的生化处理。  相似文献   

16.
采用湿式催化氧化法对垃圾渗滤液进行处理,制备了活性炭载铜、铁系列催化剂,以O_3/H_2O_2为氧化剂, COD去除率为考察指标,考察了反应工艺条件对垃圾渗滤液的处理效果。结果表明:在焙烧温度为600℃,Cu、 Fe物质的量比为3∶1时,制得的Cu-Fe/AC复合催化剂的催化剂活性相对较好;当水样体积为20 m L, H_2O_2投加量为0.5 mL, O_3通入时间为25 min(O3流量为5 g/h),催化剂投加量为1 g时, pH值在2~4和10~12时的COD去除率较好。  相似文献   

17.
为降低出水COD,提高采油废水的可生化性,采用O_3、O_3/H_2O_2组合工艺对某油田采油废水进行处理,考察氧化反应时间、O_3质量浓度、pH、H_2O_2投加量、n(H_2O_2)∶n(O_3)对废水处理效果的影响。结果表明,单独使用O_3处理油田采油废水时,在O_3为20 mg/L、反应时间为60 min、废水pH为8.50条件下,COD去除率为28.5%,B/C由0.08提至0.248;O_3/H_2O_2组合工艺的处理效果更显著,在O_3为30 mg/L、反应时间为60 min、H_2O_2投加量为0.24 g/L、废水pH为8.50的最佳条件下,COD去除率达到55.4%,B/C提升至0.440。氧化处理不仅降低了废水COD,还可提高废水的可生化性,是一种较为有效的预处理技术。  相似文献   

18.
对某钢铁厂焦化废水浓水的生化出水进行深度处理研究,采用O_3/H_2O_2高级氧化及活性炭吸附法考察不同影响因素对COD和TN的去除效果。结果表明:O3接触时间25 min、H_2O_2投加量0.6 mL、pH值8~9、活性炭投加量为20 mg/L时,CODcr40 mg/L、TN10 mg/L,达到《炼焦化学工业污染物排放标准》(GB16171-2012)中的要求,且RO浓水中有机物种类可减少约62%。  相似文献   

19.
O_3/H_2O_2高级氧化技术具有氧化能力强和无选择性等优点,被广泛用于高浓度、难降解和有毒有害的有机废水处理。考察了O_3/H_2O_2高级氧化技术在不同的处理条件(臭氧投加量、H_2O_2投加量、p H值、反应时间)下对实验室高浓度有机废水中COD的去除率影响,并通过页岩气采出水验证,结果表明:当臭氧投加量为40 mg·L~(-1)、双氧水投加量为0. 7 mg·L~(-1)、p H值为5、反应时间为40 min时,其COD去除率达90. 41%,可排入城市管网;在相同条件下处理COD浓度为1426 mg·L~(-1)的页岩气采出水,COD去除率达88. 3%。  相似文献   

20.
李欣欣  解立平  王蒙  张璐 《化工进展》2020,39(2):760-766
设计了一种具有回流的固定床臭氧催化氧化反应装置,对浸渍法制得的α-Fe2O3/γ-Al2O3催化剂的性能进行了表征,并利用其在回流固定床反应装置中对煤化工反渗透浓水的臭氧催化氧化性能进行了研究。结果表明:α-Fe2O3/γ-Al2O3的比表面积、平均孔径、总孔容和活性组分α-Fe2O3含量分别为161.74m2/g、10nm、0.4533cm3/g和8.73%。反渗透浓水COD去除率随催化剂装填高度、臭氧投加浓度和过氧化氢投加量的增加而均呈现为先增加、后降低的变化趋势,回流可显著地提高废水COD去除率,适宜的催化剂装填高度、臭氧投加浓度、过氧化氢投加量和回流比分别为350mm、300mg/L、150mg/L和50%,臭氧催化氧化反渗透浓水的COD去除率达74.33%。煤化工反渗透浓水中大部分溶解性有机物和腐殖酸类物质均被臭氧催化氧化分解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号