首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈玉  徐颖  冯岳阳 《化工学报》2014,65(2):701-710
通过响应面法对皂角苷浸提飞灰中Cu、Zn、Pb和Cd 4种重金属的实验条件进行优化,选取pH、皂角苷浓度、离子强度、温度、时间和固液比6个因素进行中心组合设计,使用design-expert8.0软件进行数据拟合,建立了Cu、Zn、Pb和Cd去除总量的工艺数学模型,通过方差分析得到6个因素对浸提液中4种重金属去除总量的主效应关系为: pH>固液比>离子强度>皂角苷浓度>温度>时间。对重金属去除总量数据进行design-expert8.0软件优化,得到皂角苷浓度为41.2g·L-1、时间为13.54 h、离子强度为0.64 mol·L-1、pH为2、固液比为1%和温度为23.4℃时,重金属总去除量达最大值,Cu、Zn、Pb和Cd的去除率分别达到55.12%、6.20%、17.80%和78.11%。  相似文献   

2.
高铁酸钾去除重金属的模拟试验研究   总被引:1,自引:0,他引:1  
研究了高铁酸钾对矿井水和模拟水样中重金属的去除效果.结果表明,pH对高铁酸钾去除模拟水样中高浓度的Pb,Cd、Fe、Zn、Mn和Cu有很大影响,去除率随着pH的升高而增加,酸性条件下去除率较低,在pH为10、加药量30 mg-L-1时,去除率在56.9%~94.40%之间;当pH为8.3、加药量30 mg·L-1时,高铁酸钾能够使矿井水中超标的Pb、Cd和Fe达到国家生活饮用水卫生标准(GB5749-2006),对矿井水中未超标低浓度Mn的去除率为53.7%,而对低浓度的Cu、Zn却几乎没有去除效果.  相似文献   

3.
小球藻吸附水体中Cd~(2+)、Pb~(2+)和Cu~(2+)的试验研究   总被引:1,自引:1,他引:0  
为了研究小球藻藻体吸附水体中Cd2+、Pb2+和Cu2+的情况,在检测了典型电子垃圾处理区水体中重金属Cd、Pb和Cu浓度的基础上,采用冷冻干燥的小球藻藻体在模拟重金属离子溶液中进行吸附试验。结果表明,水体中重金属Cu的浓度较高,Cd和Pb的污染程度较严重。藻体对于Pb2+的去除效果较好,去除率和去除量分别达到88.42%和13.262 4 mg/g;Cu2+的去除率较低,但去除量高达17.480 6 mg/g;Cd2+去除率较高,但去除量仅有0.433 7 mg/g。  相似文献   

4.
微波法再生污泥活性炭对水中重金属的吸附特性   总被引:1,自引:0,他引:1  
研究了微波再生条件对污泥活性炭吸附水中重金属效果的影响,探究了其对水中重金属的吸附动力学过程。结果表明随着微波再生功率的增加,再生污泥活性炭对重金属离子的吸附去除率增大,均大于70%。随着微波再生时间的延长,再生污泥活性炭对重金属离子的吸附去除率呈现先增大后稳定的趋势。随着微波次数的增加,再生污泥活性炭对Cu2+、Zn2+、Pb2+和Cd2+的吸附去除率逐渐减少,微波再生的次数最好控制在5次以内。再生污泥活性炭对重金属离子(Cu2+、Zn2+、Pb2+和Cd2+)的吸附符合Langmuir等温式,属于拟二阶动力学模型。  相似文献   

5.
利用粉煤灰合成沸石吸附混合重金属离子Cu^2+、Ni^2+、Pb^2+、Zn^2+,考察初始浓度对沸石吸附4种混合重金属离子的吸附效果影响。结果表明:初始浓度对沸石吸附重金属离子的效果影响显著,当混合重金属离子初始浓度不同时,沸石对其去除率也不同。当初始浓度为50mg/L与100mg/L时,重金属离子去除顺序为Cu〉Pb〉Ni〉Zn。当初始浓度提高为200mg/L与300mg/L时,去除顺序变为Cu≈Pb〉Zn〉Ni。沸石对Pb^2+与Cu^2+两种重金属离子的吸附性能较强,而对Zn^2+与Ni^2+两种重金属离子的吸附能力较弱。  相似文献   

6.
谢立祥  胡克伟 《广东化工》2010,37(2):207-209
利用剩余污泥对Cu2+、Zn2+、Cd2+三种重金属离子进行吸附研究,考察了pH、吸附时间、污泥投加量、温度等对吸附过程的影响;并探讨了吸附处理过程中三种重金属离子的等温吸附特性,以及吸附数据的线性拟合方程。实验结果表明,剩余污泥对Cu2+、Zn2+、Cd2+三种重金属离子具有良好的吸附效果,在优化条件下,三种重金属离子去除率分别达到94.3%、70.5%和81%;三种重金属离子的吸附等温线均与Langmuir方程吻合较好,吸附能力大小顺序为Cu2+Cd2+Zn2+。  相似文献   

7.
经Cd2 、Pb2 及Zn2 驯化所得的功能混合菌,在陶瓷小球表面挂膜后置于电一生物反应器内.在间歇实验中,Pb2 和Zn2 的最佳处理电压在3-4 V之间,而Cd2 在4.5~5.5 V之间.吸附60 min时,Pb2 和Zn2 达到了平衡,Cd2 在120 min时达到平衡.随着初始浓度的增加,3种重金属离子的去除率都呈现明显的下降趋势.连续实验开始15 h后.反应器对重金属离子的吸附达到稳定.同间歇处理废水方法相比.连续流程去除的重金属离子总量大大增加,但达到平衡的时间较长,且处理效果较差.  相似文献   

8.
壳聚糖超滤膜的制备及在低含量重金属废水处理中的应用   总被引:4,自引:0,他引:4  
于丽青  孙建民 《化学世界》2005,46(1):24-25,62
报道了壳聚糖超滤膜的制备及主要性能,确定了壳聚糖溶液成膜的最佳条件,制备的超滤膜透水速度为3~4mL cm2·h,对0.1%牛血清蛋白溶液的截留率可达90%。用此膜对低含量重金属废水进行处理,结果表明:通过调节溶液的pH值,使重金属离子在水溶液中形成胶体,用壳聚糖超滤膜可有效地去除水中Pb2+、Cd2+、Zn2+、Cu2+等金属离子的氢氧化物。  相似文献   

9.
利用粉煤灰合成的沸石吸附混合重金属Pb2+、Cu2+、Cd2+离子,考察吸附剂量与初始浓度对合成沸石吸附混合重金属离子的竞争吸附效果影响。结果表明:吸附剂量对合成沸石吸附Pb2+、Cu2+、Cd2+的去除率与饱和吸附量影响显著。合成沸石对3种重金属的去除率随着吸附剂投加量的增加而不断升高。当初始浓度为50 mg/L与100 mg/L时,合成沸石对3种重金属离子Pb2+、Cu2+、Cd2+的竞争吸附顺序均为:PbCuCd。合成沸石对混合重金属Pb2+、Cu2+、Cd2+的饱和吸附量随吸附剂量的增加而不断下降。  相似文献   

10.
改性玉米淀粉对重金属捕集性能的研究   总被引:1,自引:0,他引:1  
研究了二硫代氨基甲酸改性玉米淀粉(DTCS)对单一重金属溶液中重金属离子的捕集作用,考察了影响其捕集作用的因素,包括重金属种类、pH、温度、混凝时间、无机离子的干扰等,确定了合适的应用条件.结果表明,在单一重金属离子浓度为1.0×10-3 mol/L的溶液中,DTCS对重金属离子捕集的选择性:Cu2 >Pb2 >Cd2 >Zn2 >Ni2 ,去除率分别为99.91%、99.88%、87.36%、85.17%、66.36%,且K 、Ca2 等无机离子对其去除效果影响不大.  相似文献   

11.
通过实验研究了钛纳米管材料对渔业养殖水中Cu、Pb、Cd、Cr等重金属的去除效果,并通过BET、TEM等手段对材料进行了表征,验证了钛纳米管用于净化养殖废水中重金属的可行性。结果表明:钛纳米管对养殖水中重金属Cu、Pb、Cd去除效果较好,在投加量为5 g/L时,反应2小时后即完全去除;增加反应时间和材料投加量,测试的大部分重金属去除率会升高;钛纳米管对初始浓度较高的养殖水中Cd、Cr去除效果明显好于初始浓度较低的养殖水;钛纳米管微观成像呈现典型的纳米管状结构,其比表面积及孔容较大,有利于吸附速率提升。  相似文献   

12.
通过不完全炭化淀粉制备出无定形淀粉基炭材料,用X射线粉末衍射,TGA-DSC,红外光谱和比表面积测定对其进行了表征;研究了淀粉基炭对Cu2+,Pb2+,Cd2+,Zn2+的吸附性能,考察了淀粉基炭投加量、pH、温度和金属离子初始质量浓度对吸附效果的影响。金属离子的去除率随着淀粉基炭投加量的增加而上升,各种金属离子的最佳吸附pH分别为7.0(Cu2+),6.0(Pb2+),8.0(Cd2+),8.0(Zn2+)。温度越高越有利于吸附,吸附行为符合Langmuir等温吸附方程。  相似文献   

13.
离子交换法去除城市污泥酸浸液中重金属   总被引:1,自引:0,他引:1  
吝珊珊  程刚  周乃然 《应用化工》2014,(11):2003-2007
采用离子交换树脂去除城市污泥酸浸液中的Zn、Cu、Ni、Pb,对强酸一号、732、D001、D1134种阳离子交换树脂进行筛选,讨论了树脂用量、反应时间、pH值、温度等对重金属离子去除率的影响。结果表明,采用强酸一号树脂去除酸浸液中Zn、Cu、Ni、Pb的优化条件为:树脂用量2.0g/50mL,pH值3,反应时间5h,温度45℃。其中树脂用量对去除率影响最大,温度和时间次之,pH值对其影响最小。  相似文献   

14.
采用重金属捕集剂三巯三嗪三钠(TMT)深度处理低含量矿山废水中Cu2+、Zn2+、Pb2+、Cd2+、Cr3+等多种混合重金属离子,研究了pH、添加量、搅拌时间、反应时间、温度以及絮凝剂等因素对处理效果的影响。结果表明,调节废水pH为7左右,投加0.4 mL质量分数为10%的TMT溶液,室温下搅拌5 min再添加适量联合絮凝剂,总反应20 min后,各重金属离子去除率均达到98%以上,出水中所考察的重金属离子含量均远低于GB 8978-1996排放要求,捕集产物稳定性高,二次污染风险小。因此,TMT在深度处理低浓度多金属离子共存的矿山废水领域具有较好的应用前景。  相似文献   

15.
废催化裂化催化剂处理重金属废水的试验   总被引:1,自引:0,他引:1  
通过静态吸附试验 ,考察了振荡时间、温度、p H值对废催化裂化催化剂吸附处理五种重金属离子 (Cu2 、Cd2 、Ni2 、Zn2 、Pb2 )效果的影响 ,并对废催化剂在电镀废水处理中的应用作了初步试验。结果表明 ,废催化剂对低浓度电镀废水有较好的吸附效果 ,各种离子的去除率可达 6 3%~ 1 0 0 %。  相似文献   

16.
一、前言含硫醇聚合物可以和多种重金属离子,如 Cu、Ag、Au、Hg、Pb、Cd、Co、Ni 以及 Pd形成稳定的硫醇盐。它的这一性质已被用来制备交换树脂,以去除重金属离子。聚硫醇苯  相似文献   

17.
为了解碳酸钙去除水溶液中Pb、Cr、Hg、As、Cu、Zn和Ni离子能力的状况,采用聚合物模板法制备的中空微球Ca CO_3为吸附剂,研究其吸附不同金属离子的能力。结果表明,CaCO_3中空微球添加量为1.0 g/20 m L时,母液中Pb、Cu、As、Zn、Hg的去除率分别为98.6%、99.2%、99.5%、88.6%、87.2%;对Cr和Ni而言,去除率较低且波动不大,显著的差异性可能与吸附对象的价态和相对质量相关。低固液比的吸附剂与溶液中Pb、Cu、Hg和As的亲和力较强,反应器中吸附剂添加量0.1 g时,对Pb、Cu、Hg、As吸附量效果为佳;而其吸附机制主要表现为竞争性物理吸附和空隙滞留协同作用,导致元素大量吸附于CaCO_3微球孔隙。  相似文献   

18.
采用强酸表面氧化法对碳纳米管进行处理,制备稳定具有高效吸附性能的碳纳米管溶胶,用于去除水中低质量浓度重金属Cd2+,Cu2+。研究表明,在实验的pH值为2.5—9.5,对Cd2+的去除,吸附起主要作用,优化的pH值为6.0;对Cu2+的去除,pH<6.7时,吸附起主要作用,在pH>6.7时,金属离子沉淀是主要的去除原因,在pH=9.5时,达到最大去除率。在相同碳纳米管溶胶投加质量浓度情况下,对Cd2+的吸附去除率远远大于对Cu2+的去除。碳纳米管溶胶对Cd2+,Cu2+的吸附等温线呈线性,对Cd2+的吸附性能优于对Cu2+的吸附性能。  相似文献   

19.
松果对废水中Cu~(2+)、Pb~(2+)、Zn~(2+)的吸附特性研究   总被引:2,自引:2,他引:0  
以松果作为吸附剂进行了去除废水中Cu2+、Pb2+、Zn2+的吸附及解吸试验,研究了溶液pH值、吸附剂投加量、反应时间、溶液初始浓度对吸附效果的影响,以及不同pH值对达到吸附平衡的松果的解吸影响。结果表明:当pH值为5.0~5.5,Cu2+、Pb2+、Zn2+初始质量浓度约为25 mg/L时,吸附剂的最佳投加量分别为3、1.5、3 g/L,去除率分别为55.32%、86%、39.96%。3种重金属离子的吸附动力学方程符合Lagergren准二级动力学方程,R2均大于0.998。等温吸附研究表明:Freundlich方程能较好地描述Cu2+的等温吸附过程,Langmuir方程则能更好地描述Pb2+和Zn2+的吸附过程,用Langmuir方程拟合等温吸附数据得出松果对Cu2+、Pb2+、Zn2+的最大吸附量分别为9.10、31.65和9.60 mg/g。强酸是一种理想的Cu2+和Zn2+解吸剂。  相似文献   

20.
为去除煤层气采出水中的金属离子和COD(化学需氧量),采用正交实验研究了各工艺条件(pH值、Na_2CO_3加入量、聚合氯化铝(PAC)加入量和反应时间)对絮凝沉淀去除水中金属离子和COD的影响,获得了最优化的工艺参数。为确保水质达标排放,继续研究了臭氧催化氧化对COD去除效果的影响。结果表明:絮凝沉淀可有效去除煤层气采出水中的金属离子和COD,通过比较得出最优化的工艺条件为:pH值11,Na_2CO_3加入量0.2 g/(100 mL),PAC加入量3.0 g/(100 mL),反应时间30 min,在该条件下COD的去除率为53.28%(质量分数,下同),钙、镁、锌、锰离子的去除率分别为76.87%,99.42%,66.72%和77.58%;活性氧化铝负载Cu,Mn,Ni,Fe和Co的催化活性依次降低,反应60 min后COD去除率分别为35.29%,34.01%,33.73%,33.01%和31.99%;臭氧催化氧化能有效去除醇类、酯类及含氮杂环化合物,相比于臭氧单独氧化能明显提高COD的去除率;以MnO_x-NiO_x/γ-Al_2O_3为催化剂,固定催化剂投加量为50 g/L,臭氧投加量为180 mg/(L·h),反应60 min,臭氧催化氧化对COD的去除率为51.3%,比单独氧化对COD的去除率高20.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号