首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coupled coastal-bay estuarine numerical model is described and applied to investigate the combination of wind-estuarine driven circulation off the Orissa coast. The model is based on coupling of a 2-dimensional estuarine model with a 3-dimensional coastal-bay model. The models are linked through the elevation at the interface. Using the coupled model, the numerical experiments are carried out to elicit the dynamical linking between the estuarine outflow and the coastal ocean to simulate the ensuing adjoining coastal circulation. During the southwest monsoon, it is noticed that the estuarine discharge from the northern head-bay river system and the river systems that join the Bay of Bengal along the Orissa coast would sufficiently modify the coastal circulation along the coast. Numerical experiments are also carried for the model simulation of surges generated by the 1999 Orissa cyclone. It is shown that the estuarine system would influence significantly on surge development and associated inundation through the rivers.  相似文献   

2.
The Orissa super cyclone which crossed the Orissa coastal region near Paradip on October 29, 1999 proved to be disastrous. The strong winds, torrential rains with heavy rainfall and high storm surge associated with the cyclone caused havoc that resulted in the death of thousands of people, cattle and extensive damage to agricultural land, paddy crop, transmission lines, power supply, roads and buildings. In the present study, a fine resolution finite element model is used to simulate surges due to this super cyclone. The model results are compared with observed surges available from post-storm survey reports. Comparison of results show that they are in good agreement with the observed surges, and the finite element model can be used for real time surge forecasts.  相似文献   

3.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

4.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:4,自引:3,他引:1  
  相似文献   

5.
Hazards associated with tropical cyclones are long-duration rotatory high-velocity winds, very heavy rain and storm tide. India has a coastline of about 7,516?km of which 5,400?km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. The India Meteorological Department (IMD) is the nodal government agency that provides weather services related to cyclones in India. However, IMD has not identified cyclone-prone districts following any specific definition though the districts for which cyclone warnings are issued have been identified. On the other hand, for the purpose of better cyclone disaster management in the country, it is necessary to define cyclone proneness and identify cyclone-prone coastal districts. It is also necessary to decide degree of hazard proneness of a district by considering cyclone parameters so that mitigation measures are prioritised. In this context, an attempt has been made to prepare a list of cyclone hazard prone districts by adopting hazard criteria. Out of 96 districts under consideration, 12, 45, 31 and 08 districts are in very high, high, moderate and low categories of proneness, respectively. In general, the coastal districts of West Bengal, Orissa, Andhra Pradesh and Tamil Nadu are more prone and are in the high to very high category. The cyclone hazard proneness factor is very high for the districts of Nellore, East Godawari, and Krishna in Andhra Pradesh; Yanam in Puducherry; Balasore, Bhadrak, Kendrapara and Jagatsinghpur in Orissa; and South and North 24 Parganas, Medinipur and Kolkata in West Bengal. The results give a realistic picture of degree of cyclone hazard proneness of districts, as they represent the frequency and intensity of land falling cyclones along with all other hazards like rainfall, wind and storm surge. The categorisation of districts with degree of proneness also tallies with observed pictures. Therefore, this classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through detailed study.  相似文献   

6.
Storm surges generated by the strong tangential wind stressesand normal atmospheric pressure gradients at the sea surface due to tropical cyclones (TC'S)have been studied with the goal of detecting any significant and systematic changes due to climatechange. Cyclone and storm surge data for the 19th and 20th centuries for the Bay of Bengalcoast of the state of Orissa in India are available to varying degrees of quality and detail,the data being more scientific since the advent of the India Meteorological Department in 1875.Based on more precise data for the period 1971 to 2000, statistical projections have been madeon the probable intensities of tropical cyclones for various return periods. The super cyclone ofOctober 29, 1999 (SC1999) appears to have a return period of about 50 years. The cyclones of1831, 1885 and possibly the one in 1895 could have been super cyclones. During the 19th century,there were 72 flooding events associated with cyclones, whereas in the 20th century therewere only 56 events. There was no observational evidence to suggest that there was an increaseeither in the frequency or intensity of cyclones or storm surges on the coast of Orissa. However,the impact of cyclones and surges is on the increase due to increase of population and coastalinfrastructure.  相似文献   

7.
In this study a non-hydrostatic version of Penn State University (PSU) -- NationalCenter for Atmospheric Research (NCAR) mesoscale model is used to simulate thesuper cyclonic storm that crossed Orissa coast on 29 October 1999. The model isintegrated up to 123 h for producing 5-day forecast of the storm. Several importantfields including sea level pressure, horizontal wind and rainfall are compared with theverification analysis/observation to examine the performance of the model. The modelsimulated track of the cyclone is compared with the best-fit track obtained from IndiaMeteorological Department (IMD) and the track obtained from NCEP/NCAR reanalysis. The model is found to perform reasonably well in simulating the track and in particular, the intensity of the storm.  相似文献   

8.
Both finite-element and finite-difference numerical models are applied to simulate storm surges and associated currents generated by tropical cyclones that struck the coast of Andhra Pradesh, located on the east coast of India. During a cyclone, the total water level at any location on the coast is made up of the storm surge, surge–wind wave interaction and the tide. The advanced circulation two-dimensional depth-integrated (ADCIRC-2DDI) model based on finite-element formulation and the two-dimensional finite-difference model of storm surges developed at IIT Delhi, hereafter referred as IITD storm surge model, are used. These models are driven by astronomical tides at the open ocean boundary and cyclonic asymmetric winds over the surface of the computational domain. Comparison of model simulated sea-surface elevations with coarse and finer spatial resolutions suggests that the grid resolution near the coast is very crucial for accurate determination of the surges in addition to the local bathymetry. The model underpredicts surges, and the peak surge location shifts more to the right of the landfall as the spatial resolution of the model becomes coarser. The numerical experiments also demonstrate that the ADCIRC model is robust over the IITD storm surge model for surge computations as the coastline is better represented in the former.  相似文献   

9.
The paper describes a two-dimensional bay–river coupled numerical model for storm surges along the Andhra coast of India. The effect of the Krishna and Godavari rivers on the surge development is analysed. A comparative study of the surge generated by a tropical cyclone with and without the inclusion of rivers is done in detail. Three cyclones that struck the Andhra coast in November 1977, May 1990 and November 1996 were used for the simulation studies. It is found that the idealized model without a river overestimates the sea-level elevation as compared to a more realistic bay–river coupled model. The temporal variation of surge values at the mouth of the rivers is also studied for all three cyclone cases. It is found that the effect of the presence of rivers depends on the strength of the cyclone, its point of landfall and the location of the rivers with respect to the landfall point.  相似文献   

10.
《Geodinamica Acta》2013,26(5-6):259-272
The contents and the distribution of clay minerals in modern sediments of the Cadiz bay and the continental shelf have been studied aiming to establish the sedimentary exchange model and the pathways followed by the clay fraction between the bay and the adjoining continental shelf. The most abundant clay minerals in the muddy sediments consist mainly of illite, smectite, interstratified illite-smectite, kaolinite and chlorite. The application of factor analysis method (PCA) to clay minerals data are considered to be useful in the determination of sedimentary transport patterns. The data from clay mineral assemblages, and their distribution map, make possible to establish the fine sediments transport paths in the study area using clay mineral as natural tracers. This model of transport takes in consideration the facies distribution, the supplies sources and the way of fine sediments are incorporated to the marine environment.

Two flows paths have been established: the outflows coming from Cadiz bay and the littoral zones; and the inflows coming from external marine zones of the bay. These flows are controlled by tidal currents and the morphology of the coast. The action of surge and the marine currents, specially the Atlantic Surface Water flow, are also important in the transport of fine sediments coming from sources located to the north of the study zone.  相似文献   

11.
12.
The head Bay of Bengal region, which covers part of Orissa and west Bengal in India as well as Bangladesh, is one of the most vulnerable regions of extreme sea levels associated with severe tropical cyclones which cause extensive damage. There has been extensive loss of life and property due to extreme events in this region. Shallow nature of the Bay, presence of Ganga-Brahmaputra-Meghna deltaic system and high tidal range are responsible for storm surges in this region. In view of this a location specific fine resolution numerical modelis developed for the simulation of storm surges. To represent mostof the islands and rivers in this region a 3km grid resolution is adopted. Several numerical experiments are carried out to compute the storm surges using the wind stress forcings representative of 1974, 1985, 1988, 1989, 1991, 1994 and 1999 cyclones, which crossed this region. The model computed surges are in good agreement with the available observations/estimates.  相似文献   

13.
Astronomical high tides and meteorological storm surges present a combined flood hazard to communities and infrastructure. There is a need to incorporate the impact of tide-surge interaction and the spatial and temporal variability of the combined flood hazard in flood risk assessments, especially in hyper-tidal estuaries where the consequences of tide and storm surge concurrence can be catastrophic. Delft3D-FLOW is used to assess up-estuary variability in extreme water levels for a range of historical events of different severity within the Severn Estuary, southwest England as an example. The influence of the following on flood hazard is investigated: (i) event severity, (ii) timing of the peak of a storm surge relative to tidal high water and (iii) the temporal distribution of the storm surge component (here in termed the surge skewness). Results show when modelling a local area event severity is most important control on flood hazard. Tide-surge concurrence increases flood hazard throughout the estuary. Positive surge skewness can result in a greater variability of extreme water levels and residual surge component, the effects of which are magnified up-estuary by estuarine geometry to exacerbate flood hazard. The concepts and methodology shown here can be applied to other estuaries worldwide.  相似文献   

14.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

15.
In this study, a doubly nested tide?Csurge interaction model was established for the coastal region of Bangladesh. A fine grid model, capable of incorporating all major offshore islands, was nested into a coarse grid model extending up to 15°N latitude of the Bay of Bengal. To take into account the thickly populated small and big islands between Barisal and Chittagong and the extreme bending of the coastline accurately, a very fine grid model for this region was again nested into the fine grid model. Along the northeast corner of this very fine grid model, the Meghna River discharge was taken into account. The boundaries of the coast and islands were approximated through proper stair step, and the model equations were solved by semi?Cimplicit finite difference technique using staggered grid. Appropriate tidal regime over the model domain was generated by forcing the sea level to be oscillatory with the constituent M2 along the southern open boundary of the coarse grid model omitting wind stress. This previously generated tidal regime was introduced as the initial state of the sea for nonlinear tide?Csurge interaction phenomenon. The model was applied to estimate water levels along the coastal region of Bangladesh due to the interaction of tide and surge associated with the storm April 1991, and the results were found to be in a reasonable agreement with those observed. The model was used to investigate the influence of offshore islands on water levels and water levels were found to be significantly influenced by offshore islands.  相似文献   

16.
Impact of Sea-level Rise and Storm Surges on a Coastal Community   总被引:7,自引:7,他引:7  
A technique to evaluate the risk of storm tides (the combination of a storm surge and tide) under present and enhanced greenhouse conditions has been applied to Cairns on the north-eastern Australian coast. The technique combines a statistical model for cyclone occurrence with a state-of-the-art storm surge inundation model and involves the random generation of a large number of storm tide simulations. The set of simulations constitutes a synthetic record of extreme sea-level events that can be analysed to produce storm tide return periods. The use of a dynamic storm surge model with overland flooding capability means that the spatial extent of flooding is also implicitly modelled. The technique has the advantage that it can readily be modified to include projected changes to cyclone behaviour due to the enhanced greenhouse effect. Sea-level heights in the current climate for return periods of 50, 100, 500 and 1000 years have been determined to be 2.0 m, 2.3 m, 3.0 m and 3.4 m respectively. In an enhanced greenhouse climate (around 2050), projected increases in cyclone intensity and mean sea-level see these heights increase to 2.4 m, 2.8 m, 3.8 m and 4.2 m respectively. The average area inundated by events with a return period greater than 100 years is found to more than double under enhanced greenhouse conditions.  相似文献   

17.
为揭示河口湾水动力环境对滩涂利用的累积响应过程,以珠江口伶仃洋河口湾为例,基于潮波数学模型和潮流数学模型,研究了1981年以来湾内进出潮量、分潮振幅和潮流流速的累积变化。结果表明:相对于1981年,2018年岸线条件下伶仃洋湾口断面涨落潮量累积减少4.9%~6.0%、内伶仃断面涨落潮量累积减少9.0%~12.8%、深圳湾断面涨落潮量累积减少17.8%、南沙断面涨落潮量累积减少5.0%~6.3%;伶仃洋M2分潮振幅呈增加趋势,振幅增幅由南向北增加,潮波由南向北变形进一步加剧;伶仃洋最大可能潮差变化与M2分潮振幅变化趋势一致,潮汐性质没有发生变化;伶仃洋潮流流速总体减小,西岸流速减幅高于东岸,湾顶附近流速略有增加。  相似文献   

18.
Cyclone-generated surface waves are simulated using state-of-art SWAN (Simulating WAves Nearshore) model coupled with hydrodynamic model inputs. A severe cyclonic storm passed over the Arabian Sea during 4–9th November 1982 is selected from UNISYS track records. The cyclone lasted for nearly 6 days and subsided with a land fall at Gujarat coast, west coast of India. In this study, cyclonic wind fields are generated using a well-established relationship suggested by Jelesnianski and Taylor (1973). The associated water level variations due to storm surge and surge generated currents are simulated using POM (Princeton Ocean Model). The outputs are one-way coupled with the wave model SWAN for simulating wave parameters off Gujarat, north-east basin of Arabian Sea. An extensive literature review is carried out on the progress and methodology adopted for storm wave modelling and analysis. The results presented in this paper reveal the severity of the storm event and would be highly useful for assessing the extreme wave event/climate especially for the south coast of Gujarat.  相似文献   

19.
钱塘江河口杭州湾风暴潮溢流计算方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
建立钱塘江河口杭州湾风暴潮模型,探讨风暴潮出现溢流的计算方法。将可能出现溢流的沿海堤防以及海水侵入的陆地均依照高程概化为计算区域,采用糙率控制潮水的溢流流量,以模型的堤顶单宽流量和根据计算潮位采用宽顶堰公式换算流量的一致性来率定糙率值。在此基础上模拟了风暴潮漫溢堤防的过程,结果表明风暴潮出现溢流后,钱塘江河口杭州湾之间两岸大片的陆地存在淹没风险,沿程潮位由于溢流出现不同程度的降低响应。  相似文献   

20.
Phenomenal storm surge levels associated with cyclones are common in East Coast of India. The coastal regions of Andhra Pradesh are in rapid stride of myriad marine infrastructural developments. The safe elevations of coastal structures need a long-term assessment of storm surge conditions. Hence, past 50 years (1949–1998), tropical cyclones hit the Bay are obtained from Fleet Naval Meteorological & Oceanographic Center, USA, and analyzed to assess the storm surge experienced around Kakinada and along south Andhra Pradesh coast. In this paper, authors implemented Rankin Hydromet Vortex model and Bretschneider’s wind stress formulation to hindcast the surge levels. It is seen from the hindcast data that the November, 1977 cyclone has generated highest surge of the order of 1.98 m. Extreme value analysis is carried out using Weibull distribution for long-term prediction. The results reveal that the surge for 1 in 100-year return period is 2.0 m. Further the highest surge in 50 years generated by the severe cyclone (1977) is numerically simulated using hydrodynamic model of Mike-21. The simulation results show that the Krishnapatnam, Nizampatnam and south of Kakinada have experienced a surge of 1.0, 1.5 and 0.75 m, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号