首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Formation of iron oxide nanotubes on to pure iron substrate by an electrochemical anodization method was investigated in fluoride containing electrolytes. Anodization of iron foil in fluoride containing borate solution resulted in stacked nano-ring type oxide morphology. Nanoporous oxide layer was observed at low pH and a granular oxide layer was formed at higher pH of phosphate + fluoride solutions. Formation of either nanoporous or nanotubular oxide layer was observed in ethylene glycol (EG) solution containing 0.05-0.1 M fluoride + 1.5-3.0 vol.% water. Transition from nanoporous structure to nanotubular structure was critically controlled by anodization potential, water addition and fluoride concentration of the EG solution. The potential required for this transition decreased with increase in the water content up to 7 vol.% beyond which enhanced dissolution occurred. Annealing of the nanotubes at 500 °C resulted in predominantly α-Fe2O3 crystal structure. The annealed Fe2O3 samples consisting of a single layer of nanotubular structure showed a photo current density of 0.4 mA/cm2 at 0.5 V Ag/AgCl in 1 M KOH solution under simulated solar light illumination.  相似文献   

2.
This work is intended to define an optimal methodology for preparing highly ordered TiO2 nanotube arrays by a 60-V anodization in a glycol ethylene solution. In order to obtain a mechanically stable structure with a high UV photoconversion efficiency, it is necessary to carefully control the growth mechanism through the anodization process. For this reason, the nanotube arrays have to be formed upon a compact titanium dioxide layer with well-defined thickness. Besides, both the fluoride concentration and anodization time are strictly correlated, because elevated concentrations and/or a long anodization time produce unstable structure with low photoconversion efficiency. The best result in the terms of reproducibility has been obtained previously for a three-minute galvanostatic oxide growth on the pickled titanium sheet, and anodic growth in ethylene glycol solution containing 1 wt.% H2O and 0.20 wt.% NH4F for a period lower than 4.5 h. The UV photoconversion efficiency was measured and a maximum value of 28.3% has been obtained, which is the highest result in the literature.  相似文献   

3.
We show that an ionic liquid consisting of imidazolium salt with a BF4 counter ion (BMIM-BF4) can directly be used to grow well-defined layers of self-organized TiO2 nanotubes. For this a Ti metal substrate is anodized in this electrolyte for potential range between 3 VAg/AgCl and 10 VAg/AgCl without addition of free fluoride species (fluorides are used in all previous tube growth procedures). Key factors that influence the morphology and geometry of the resulting nanotubular layer are the anodic potential, the anodization time and particularly the water content in the ionic liquid. The resulting nanotubes layers have thickness in the range of approximately 300-650 nm; with individual tubes that have diameters between 27 nm and 43 nm.  相似文献   

4.
F. Mura  A. Pozio 《Electrochimica acta》2009,54(14):3794-1789
This work is intended to define an optimal methodology of preparation of highly ordered TiO2 nanotube arrays by a 60 V anodization in a glycol ethylene solution. The effect of the presence of an initial superficial oxide on the sample, before operating the anodization growth, has been analysed. The best result has been obtained by a galvanostatic oxide growth on the titanium sheet, before the anodization process. The photoconversion efficiency was measured and we have obtained a maximum value of 12.97%, strictly in line with the literature. We have also underlined the necessity to operate a heat treatment using only dry atmosphere.  相似文献   

5.
An enhanced hydrogen production by photoelectrocatalytic water splitting was obtained using extremely highly ordered nanotubular TiO2 arrays in this work. Highly ordered TiO2 nanotube arrays with a regular top porous morphology were grown by a facile and green three-step electrochemical anodization. The well ordered hexagonal concaves were uniformly distributed on titanium substrate by the first anodization, served as a template for further growth of TiO2 nanotubes. As a result, the TiO2 nanotube arrays constructed through the third anodization showed appreciably more regular architecture than that of the sample by conventional single anodization under the same conditions. The enhanced photoelectrochemical activity was demonstrated through the hydrogen generation by photoelectrocatalytic water splitting, with an exact H2 evolution rate up to 420 μmol h−1 cm−2 (10 mL h−1 cm−2) in 2 M Na2CO3 + 0.5 M ethylene glycol. The photocurrent density of the third-step anodic TiO2 nanotubes is about 24 mA cm−2 in 0.5 M KOH, which is 2.2 times higher than that of the normal TiO2 nanotubes (∼11 mA cm−2) by a single electrochemical anodization.  相似文献   

6.
Alumina (Al2O3) 1D nanotubular structures were synthesized by chemical vapor deposition (CVD) using aluminum (Al) and Al2O3 powder sources at a temperature of 1300 °C and a pressure of 100 Pa. At present, no research has been published regarding the synthesis of α-phase Al2O3 nanotubes using only a powder source. In this work, we attempted to grow α-phase Al2O3 nanotubes without catalysts. As-deposited nanotubular structures had an irregular and ragged surface morphology that was related to the boundary layer thickness. Moreover, complementary nanotubular structures can be obtained via an annealing process. A model to describe the irregular nanotubular structure formation was suggested, and the effect of the boundary layer thickness was demonstrated in our experimental conditions.  相似文献   

7.
V.C. Anitha 《Electrochimica acta》2010,55(11):3703-9284
The electrochemical behavior of fluorine containing electrolytes and its influence in controlling the lateral dimensions of TiO2 nanotubes is thoroughly investigated. Potentiostatic anodization is carried out in three different electrolytes, viz., aqueous hydrofluoric acid (HF), HF containing dimethyl sulphoxide (DMSO) and HF containing ethylene glycol (EG). The experiments were carried out over a broad voltage range from 2 to 200 V in 0.1-48 wt% HF concentrations and different electrolytic compositions for anodization times ranging from 5 s to 70 h. The chemistry that dictates how the nature of electrolytes influences the morphology of nanotubes is discussed. Electrochemical impedance spectra were recorded for varying compositions of all the electrolytes. It was observed that composition of the electrolyte and its fluorine inhibiting nature has significant impact on nanotube formation as well as in controlling the aspect ratio. The inhibiting nature of EG is helpful in holding fluorine at the titanium anode, thereby allowing controlled etching at appropriate voltages. Thus our study demonstrates that HF containing EG is a promising electrolytic system providing wide tunability in lateral dimensions and aspect ratio of TiO2 nanotubes by systematically varying the anodization voltage and electrolyte composition.  相似文献   

8.
FeTi alloy was prepared by a vacuum smelting method, iron titanium oxide nanotube arrays have been made directly by anodization of the FeTi alloy. Morphologies and microstructures of the samples were characterized by scanning electron microscope, transmission electron microscope, and X-ray diffractometer. Influences of temperature and H2O concentration on the morphologies of the nanotube arrays have been discussed in detail. Magnetic properties of the samples have also been investigated. The as-prepared samples were amorphous. When annealed at 500 °C and 550 °C, pesudobrookite Fe2TiO5 was obtained. At 600 °C, there were mixed Fe2TiO5, rutile TiO2, and α-Fe2O3. Magnetic performance of the nanotube arrays exhibited high sensitivity to temperature and changed interestingly upon annealing. The values of the coercivity and remanence were 340 Oe and 0.061 emu/g respectively for the sample annealed at 550 °C.  相似文献   

9.
Hierarchical structured TiO2 nano-tubes were prepared following a two-step method: the highly ordered uniform TiO2 nanotube arrays were first grown by the conventional electrochemical anodization of the Ti metal sheet followed by mechanical milling of the as-fabricated TiO2 nanotube arrays. The obtained nanotubes with a length around 400 nm and opening diameter ∼100 nm were formed mixed with the spherical TiO2 single crystals with a diameter around 10 nm indicating hierarchical nanostructure. The as-synthesized TiO2 hierarchical nanotubes based resistive-type chemical sensor exhibits good sensitivity to formaldehyde at room temperatures with or without UV-irradiation. The response of the sensor increased almost linearly as a function of the concentration of formaldehyde from 10–50 ppm under UV irradiation. The response of the sensor to different relative humidity and other possible interferents such as ammonia, methanol and alcohol was investigated. The larger response of the sensor to formaldehyde relative to these interferents is suggested to be due to the deeper diffusion of formaldehyde into the TiO2 nanotubes.  相似文献   

10.
In this paper, we present the synthesis of self-organized TiO2 nanotube arrays formed by anodization of thin Ti film deposited on Si wafers by direct current (D.C.) sputtering. Organic electrolyte was used to demonstrate the growth of stable nanotubes at room temperature with voltages varying from 10 to 60 V (D.C.). The tubes were about 1.4 times longer than the thickness of the sputtered Ti film, showing little undesired dissolution of the metal in the electrolyte during anodization. By varying the thickness of the deposited Ti film, the length of the nanotubes could be controlled precisely irrespective of longer anodization time and/or anodization voltage. Scanning electron microscopy, atomic force microscopy, diffuse-reflectance UV–vis spectroscopy, and X-ray diffraction were used to characterize the thin film nanotubes. The tubes exhibited good adhesion to the wafer and did not peel off after annealing in air at 350 °C to form anatase TiO2. With TiO2 nanotubes on planar/stable Si substrates, one can envision their integration with the current micro-fabrication technique large-scale fabrication of TiO2 nanotube-based devices.  相似文献   

11.
We report on the initial and later stages of apatite formation from simulated body fluid on titania with different surface morphologies (compact or nanotubular) and different crystal structures (anatase or amorphous). The nanotubular layers were fabricated by electrochemical anodization in fluoride-containing electrolytes. The study investigates the enhanced apatite deposition on titania nanotubes. In the initial stages of apatite growth, more nuclei are formed on the nanotubular surface than on flat compact TiO2. While the crystallographic structure of the substrate plays a less important role than the morphology in the initial nucleation stages, it is of great importance in the later stages of apatite crystal growth. The nanotubular morphology combined with an anatase structure leads to the formation of apatite layers with a thickness of >6 nm in less than 2 days. No stable apatite layers can be observed on amorphous TiO2 films, neither on compact nor on nanotubular substrates.XPS, FT-IR and XRD measurements reveal that carbonated hydroxyapatite (CHA) of low crystallinity is formed on annealed nanotubular and compact titania.Electrochemically grown and annealed TiO2 nanotube arrays having anatase structure are expected to be a good precursor system for the formation of CHA and thus for the preparation of osseointegrative implants.  相似文献   

12.
Immobilized TiO2 nanotube electrodes with high surface areas were grown via electrochemical anodization in aqueous solution containing fluoride ions for photocatalysis applications. The photoelectrochemical properties of the grown immobilized TiO2 film were studied by potentiodynamic measurements (linear sweep voltammetry), in addition to the calculation of the photocurrent response. The nanotube electrode properties were compared to mesoporous TiO2 electrodes grown by anodization in sulfuric acid at high potentials (above the microsparking potential) and to 1 g/l P-25 TiO2 powder. Photocatalyst films were evaluated by high resolution SEM and XRD for surface and crystallographic characterization. Finally, photoelectrocatalytic application of TiO2 was studied via inactivation of E. coli. The use of the high surface area TiO2 nanotubes resulted in a high photocurrent and an extremely rapid E. coli inactivation rate of ∼106 CFU/ml bacteria within 10 min. The immobilized nanotube system is proven to be the most potent electrode for water purification.  相似文献   

13.
Anatase titania nanotube arrays were fabricated by means of anodization of Ti foil and annealed at 400 °C in respective CO and N2 gases for 3 h. Electrochemical impendence spectroscopy study showed that CO annealed arrays possessed a noticeably lower charge-transfer resistance as compared with arrays annealed in N2 gas under otherwise the same conditions. TiO2 nanotube arrays annealed in CO possessed much improved lithium ion intercalation capacity and rate capability than N2 annealed samples. At a high charge/discharge current density of 320 mA g−1, the initial discharge capacity in CO annealed arrays was found to be as high as 223 mAh g−1, 30% higher than N2 annealed arrays, ∼164 mAh g−1. After 50 charge/discharge cycles, the discharge capacity in CO annealed arrays remained at ∼179 mAh g−1. The improved intercalation capacity and rate capability could be attributed to the presence of surface defects like Ti-C species and Ti3+ groups with oxygen vacancies, which not only improved the charge-transfer conductivity of the arrays but also possibly promoted phase transition.  相似文献   

14.
Well‐aligned, high aspect‐ratio and open‐ended TiO2 nanotube arrays secured within a Ti foil (TiO2 nanotubes cartridge) were successfully prepared through the double‐sided anodization method. With ~210 µm of nanotube length, the anodic growth of TiO2 was accelerated and stabilized by the lactic acid‐containing ethylene glycol electrolyte. In the absence of lactic acid, the anodization led to detachment of nanotubes from the Ti foil after 5–6 h of high voltage (80 V) anodization. Transmission electron microscope image and Raman spectrum revealed that the as‐anodized TiO2 nanotube arrays without annealing treatment were partially crystalline anatase and demonstrated photocatalytic activity in the mineralization of formic acid. © 2015 American Institute of Chemical Engineers AIChE J, 62: 415–420, 2016  相似文献   

15.
Nano-sized composite powder which consisted of two manganese-based oxides, alpha manganese dioxide (α-MnO2) and spinel Li-Mn-O, was successfully formed by intergrowth of the spinel phase inside α-MnO2. This composite oxide was synthesized by precipitation and heat treatment in air; α-manganese dioxide powder was firstly prepared by oxidative precipitation of Mn(II) with K2S2O8 in an aqueous solution, and then a mixture of the obtained manganese oxide powder and LiOH methanol solution was heat-treated in air. Electron microscopy and diffraction observations confirmed that the manganese oxide composite consisted of nano-sized grains of the spinel LiMn2O4 and α-MnO2 phases. It was found that this α-MnO2/spinel LiMn2O4 composite electrode exhibited highly reversible lithium insertion compared to the pristine α-MnO2 and conventional LiMn2O4, that is, the composite demonstrated high discharge capacity of 148 mAh g−1 as a cathode material of lithium cells in the potential range of 2.5-4.3 V with no significant capacity fading. It was thought that the intimately mixing of two oxides on a nanometer scale helped to maintain structural integrity on charge-discharge cycling, which leads to excellent capacity retention for both of the spinel and alpha-type manganese oxide.  相似文献   

16.
The iron oxide nanoparticles were loaded onto self-organized TiO2 nanotube layers grown by anodization of Ti in fluoride containing electrolytes. The nanoparticles were obtained by electrodepositing method in glycerol/water/FeCl3·6H2O electrolytes at room temperature. The X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) measurements showed that the nanoparticles consisted of iron nanocrystalline (Fe) and magnetite (Fe3O4). The hematite (α-Fe2O3) structure was obtained by annealing in air at 450 °C. The growth mechanism of the nanoparticles and their morphology were also described. Furthermore, the nanoparticles exhibited good ferromagnetic properties at room temperature.  相似文献   

17.
Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H2. A temperature-dependent sensing from 25°C to 200°C was also found. Based on the experimental measurements and first-principles calculations, the electronic structure and hydrogen sensing properties of the Ni-doped TiO2 with an anatase structure were also investigated. It reveals that Ni substitution of the Ti sites could induce significant inversion of the conductivity type and effective reduction of the bandgap of anatase oxide. The calculations also reveal that the resistance change for Ni-doped anatase TiO2 with/without hydrogen absorption was closely related to the bandgap especially the Ni-induced impurity level.  相似文献   

18.
This work describes the synthesis and hydration behavior of dicalcium silicates doped with manganese. The syntheses were performed using silica obtained from rice hull ash. The solids (SiO2, CaO and MnO) were weighed in stoichiometric proportions to prepare silicates having a ratio (Ca + Mn)/Si = 2. Insertion of manganese varied from 1 to 10% (mol). Solids were grounded and water was added rendering aqueous suspensions. The suspensions were sonicated for 60 min in an ultrasonic bath. After drying, the resulting solids were grounded and burned at 800 °C. The preparation of calcium silicates containing up to 10% of manganese oxide was observed.Hydration degree of a dicalcium silicate and calcium silicate containing 5% of manganese was determined by thermal analysis. Both materials present similar behavior. Hydration degree reaches approximately 70% after 60 days.  相似文献   

19.
Photoelectrochemical application of nanotubular titania photoanode   总被引:2,自引:0,他引:2  
Yibing Xie 《Electrochimica acta》2006,51(17):3399-3406
Titania/titanium (TiO2/Ti) electrodes with tailored surface structure have been fabricated by galvanostatic-potentiostatic anodization process. Highly ordered titania nanotubes array can be prepared by electrolyzing titanium foil at 20 V for 40 min in HF-H3PO4 electrolyte. Comparatively, micro-structured and crystallized TiO2 multiporous film can be prepared at 20-40 V for 6 h in H2SO4-H3PO4-H2O2-HF electrolyte. The morphological characteristics and crystal behaviors of both nanotubular and micro-structured TiO2 films are investigated by field emission scanning electron microscopy and X-ray diffraction measurement. Photoelectrochemical properties of TiO2/Ti film electrodes are examined by anodic photocurrent response and cyclic voltammetry measurement. Photocatalytic and photoelectrocatalytic application are investigated by using either nanotubular TiO2/Ti thin-film or micro-structured TiO2/Ti thick-film electrodes as photoanodes for recalcitrant organic pollutant degradation.  相似文献   

20.
Titania nanotubes represent exciting opportunities in solar cell, sensing, and catalytic applications. In this work, four different surface polishing conditions: as-received, chemical polishing, mechanical polishing, and electropolishing, are studied in order to understand the effect of different surface conditions on the anodization process and nanotube morphology. At the same anodization condition of 100 V in 0.1 M NH4F ethylene glycol at 0 °C for 3 min, the as-received and mechanically polished samples show nano-tubular surfaces while the chemically polished and electropolished samples have oxide layers on the top of the nanotubes. The nanotube morphologies, anodization current vs. time curves, and the bottom barrier layers are all related to the Ti surface conditions. The electropolished surface leads to the most homogeneous TiO2 nanotube formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号