首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
UHMWPE共混改性HDPE薄膜性能的研究   总被引:2,自引:0,他引:2  
采用中等摩尔质量聚乙烯(MMWPE)首先对超高摩尔质量聚乙烯(UHMWPE)进行改性,然后通过两步共混法制备了HDPE/UHMWPE共混吹塑薄膜,研究了共混物的力学、流变性能以及MMWPE对UHMWPE力学和流变性能的影响。实验结果表明,当改性UHMWPE中的MMWPE的质量分数为40%时,改性UHMWPE的力学性能下降不大,而流变性能大大改善。两步法制得的HDPE/UHMWPE薄膜表面的晶点明显减少,比一步法得到的薄膜的拉伸强度和撕裂强度分别提高了20%和12%,比纯HDPE的分别提高45%和21%。  相似文献   

2.
介绍了一种拉伸流动支配的叶片挤出机的结构及其熔融塑化过程,利用该设备制备了碳纤维(CFs)/超高分子量聚乙烯(UHMWPE)/高密度聚乙烯(HDPE)共混物,研究了CFs和UHMWPE含量对共混物微观形貌、结晶性能和力学性能的影响。SEM图像表明,拉伸流动支配的叶片挤出机对CFs和UHMWPE有很好的分散混合效果;DSC分析结果表明,低含量的CFs和UHMWPE可以协同提高共混物的结晶度;加入适量的CFs和UHMWPE可使共混物的拉伸强度明显提升,当UHMWPE含量为8%、CF含量为12%时,CFs/UHMWPE/HDPE共混物拉伸强度与HDPE纯料相比,提高了23.4%;与CFs/HDPE共混物相比,加入UHMWPE可以有效缓解共混物冲击强度的降低,当UHMWPE含量为12%时,CFs/UHMWPE/HDPE共混物的冲击强度与CFs/HDPE共混物相比,提高了29.7%。  相似文献   

3.
利用电磁振动挤出机制备高密度聚乙烯/超高相对分子质量聚乙烯(HDPE/UHMWPE)共混物,对比了静态和动态下共混吹塑薄膜的力学性能及薄膜的表观,用振动毛细管流变仪测定了静态和动态下共混物的流变行为,用差示量热扫描仪(DSC)探讨了共混物的结晶行为。结果表明,电磁振动挤出机制备的共混物吹制薄膜的力学性能均比稳态下的高;振动态时共混物的结晶度高,结晶峰型更为尖锐;振动力场中的共混物的表观粘度低于稳态的,振动力场改善HDPE/UHMWPE共混物的成型加工性能。  相似文献   

4.
薛锋 《中国塑料》2007,21(4):48-53
采用两段淤浆聚合工艺合成了具有双峰/宽峰相对分子质量分布(MWD)的高密度聚乙烯大型中空容器级树脂,并对共混物树脂的力学性能、热性能及流变进行了分析表征。结果表明:随着丁烯-1含量的增加,共混物的密度、熔点降低,环境应力开裂(ESCRF50)性能增加,而共混树脂的刚性很大程度上取决于可得到的结晶度。流变行为结果表明,通过调整氢气、改变共聚单体的加量,控制低相对分子质量均聚物倩相对分子质量共聚物的质量分数,可以获得力学性能和加工性能的平衡。  相似文献   

5.
将一定量超高分子量聚乙烯(UHMWPE)引入高密度聚乙烯(HDPE)中构成共混体系,通过对共混体系的熔体质量流动速率(MFR)、拉伸屈服强度、弯曲性能、冲击强度进行研究,探讨了不同质量分数、不同相对分子质量的UHMWPE对UHMWPE/HDPE共混体系的流动性和力学性能的影响。  相似文献   

6.
聚乙烯/聚丙烯共混体系力学性能的研究   总被引:2,自引:0,他引:2  
研究了线型低密度聚乙烯(LLDPE)/聚丙烯(PP)共混体系、高密度聚乙烯(HDPE)/PP共混体系、超高相对分子质量聚乙烯(UHMWPE)/PP共混体系的力学性能和熔体流动速率。结果表明,UHMWPE的增韧效果最好,在UHMWPE的质量分数为15%时体系的综合力学性能优异,当UHMWPE质量分数大于15%时,材料的综合性能开始下降。  相似文献   

7.
通过DSC、SEM和动态流变法分析超高分子量聚乙烯/高密度聚乙烯(UHMWPE/HDPE)共混物的相容性。结果表明:UHMWPE和HDPE具有良好的相容性。UHMWPE/HDPE共混物是典型的假塑性流体,当HDPE的质量分数逐渐增大,共混物的复数黏度明显减小,其流动性变好。UHMWPE能够显著提高共混物的低温冲击性能,当UHMWPE含量超过40%,共混物在-60℃的缺口冲击强度在70 kJ/m2以上。当UHMWPE含量为50%,共混物的熔体流动速率为0.12 g/10min,-60℃缺口冲击强度达到77 kJ/m2,使加工性和低温冲击性能达到平衡。  相似文献   

8.
采用线性低密度聚乙烯(LLDPE)对双峰高密度聚乙烯(BHDPE)和高密度聚乙烯(HDPE)进行共混,测定共混物的力学性能和DSC曲线。结果显示共混物均可以产生共晶,LLDPE对BHDPE力学性能影响较大;在LLDPE/HDPE中添加BHDPE,三者共混物具有更好的力学性能,流变性能显示三者共混物体系黏度变化不大,为制备性能最优、成本最低的三者共混物提供了依据。  相似文献   

9.
用两段淤浆聚合工艺合成了具有宽峰或双峰相对分子质量分布的高密度聚乙烯(HDPE)/(乙烯/丁烯-1)共聚树脂的反应釜共混聚合物。随着丁烯-1用量的增加,共混物的密度、熔点、结晶度、拉伸屈服应力减小,而断裂伸长率增加。随着高相对分子质量共聚物的含量增加,熔点、密度、结晶度减小,相对分子质量分布的双峰特性也更明显。通过调整两段聚合物的熔体流动速率、两段聚合物之比来控制相对分子质量大小及其分布。控制第一段小分子数目,增加第二段相对分子质量或减小密度可获得最大耐环境应力开裂性能。  相似文献   

10.
《合成纤维工业》2015,(6):43-48
将超高相对分子质量聚乙烯(UHMWPE)与共混组分聚烯烃(PB)按一定质量比计量,并加入质量分数为0.3%的抗氧剂1010,在双螺杆挤出机上共混造粒,研究了PB的用量对UHMWPE/PB共混物熔点和流变性能的影响;采用实验室熔融纺丝装置对UHMWPE/PB共混物进行纺丝,拉伸得到UHMWPE/PB共混纤维,研究了共混纤维的形貌、结晶性能和力学性能。结果表明:在共混温度为230~290℃时,UHMWPE/PB共混物可实现宏观上均匀共混;共混物具有介于两共混组分熔点之间的单一熔点,共混物熔点随UHMWPE含量的提高而提高;共混物熔体属假塑性流体,270~320℃条件下,随UHMWPE含量的增加,UHMWPE/PB共混物结构黏度指数逐渐增加,黏流活化能逐渐减小,共混物的熔体黏度对温度不敏感;当UHMWPE/PB质量比为1∶1,纺丝温度为310℃时,共混物具有良好的可纺性,经过19倍的后拉伸,所获得的UHMWPE/PB共混纤维直径为45μm,断裂强度可达16.4 c N/dtex,初始模量约190.0 c N/dtex。  相似文献   

11.
In order to clarify the effect of high molecular weight component on the crystallization of bimodal high density polyethylene (HDPE), a commercial PE-100 pipe resin was blended with small loading of ultra high molecular weight polyethylene (UHMWPE). The isothermal crystallization kinetics and crystal morphology of HDPE/UHMWPE composites were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The presence of UHMWPE results in elevated initial crystallization temperature of HDPE and an accelerating effect on isothermal crystallization. Analysis of growth rate using Lauritzen-Hoffman model shows that the fold surface free energy (σe) of polymer chains in HDPE/UHMWPE composites was lower than that in neat HDPE. Morphological development during isothermal crystallization shows that UHMWPE can obviously promote the nucleation rate of HDPE. It should be reasonable to conclude that UHMWPE appeared as an effective nucleating agent in HDPE matrix. Rheological measurements were also performed and it is shown that HDPE/UHMWPE composites are easy to process and own higher melt viscosity at low shear rate. Combining with their faster solidification, gravity-induced sag in practical pipe production is expected to be effectively avoided.  相似文献   

12.
Three types of ultra-high molecular weight polyethylene (UHMWPE) with different entangled state and molecular weight were blended with high-density polyethylene (HDPE) matrix by melt blending. Rheology, 2D-SAXS, 2D-WAXD, DSC, and mechanical tests were used to study the evolution and difference of microstructure and mechanical properties of the blends. The addition of weakly entangled UHMWPE enhanced the chain diffusion and chain orientation ability under a specific flow field. Thus, the rheological properties and mechanical properties of the blends were improved with the mix of weakly entangled UHMWPE. The mechanical properties enhancement effect of HDPE/UHMWPE blends with weakly entangled UHMWPE was owing to the shish-kebab structure formed in the injection molding process. The molecular chains of UHMWPE with a low degree of entanglement and high molecular weight increased the lamella size and crystallinity of the blends during processing. This leads to the formation of more oriented shish structures and more kebab lamella. Besides, the molecular chains of weakly entangled UHMWPE were better interlocked and intertwined with other polyethylene chains in the amorphous region, acting as the tie molecules, significantly improving the impact resistance.  相似文献   

13.
Hydroxyapatite (HA) is part of bone mineral composition. Several attempts have been made to incorporate HA into high density polyethylene (HDPE) to produce bone replacement biomaterials since neat HDPE is not suitable as bone replacement. The blending of HDPE with ultra high molecular weight polyethylene (UHMWPE) up to 50% by weight was performed with the aim of improving the toughness of composites. Reinforcement of blend with HA of up to 50% by weight was carried out. Methods of characterizing the composites included density, differential scanning calorimetry, thermal gravimetric analysis, ash content, and morphological examination using scanning electron microscope. For the mechanical properties of the composites, tensile, flexural, and impact tests were carried out. Incorporation of HA into HDPE has resulted in the brittleness of the composites. Blending of HDPE with UHMWPE in the presence of HA was found to improve the mechanical properties and promote a ductile failure of the resulting composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3931–3942, 2006  相似文献   

14.
In order to improve the properties of bamboo-plastic composites (BPCs), bamboo flour/high-density polyethylene (HDPE) composites were reinforced with ultrahigh molecular weight polyethylene (UHMWPE). The effects of UHMWPE on properties of composites were studied. The crystallinity of composites decreased slightly. Compared with non-UHMWPE added bamboo powder/HDPE composite, the composite with 6 wt % UHMWPE, showed decrease in water absorption to 0.41%, whereas its tensile strength and flexural strength increased to 34.51 and 25.88 MPa, respectively, a corresponding increase of 34.59 and 12.87%. The temperatures corresponding to initial degradation temperature (Tinitial) and maximum degradation temperature (Tmax) of the composite increased from 282.7 and 467.4 °C to 288.5 and 474.7 °C respectively. Scanning electron microscopic images showed that UHMWPE was well dispersed and fully extended as long fibers in the composite, forming a “three-dimensional physically cross-linked network structure,” which contributed to the improved properties of the composites. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48971.  相似文献   

15.
All‐polyethylene composites exhibiting substantially improved toughness/stiffness balance are readily produced during conventional injection molding of high density polyethylene (HDPE) in the presence of bimodal polyethylene reactor blends (RB40) containing 40 wt% ultrahigh molar mass polyethylene (UHMWPE) dispersed in HDPE wax. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses shows that flow‐induced crystallization affords extended‐chain UHMWPE nanofibers forming shish which nucleates HDPE crystallization producing shish‐kebab structures as reinforcing phases. This is unparalleled by melt compounding micron‐sized UHMWPE. Injection molding of HDPE with 30 wt% RB40 at 165 °C affords thermoplastic all‐PE composites (12 wt% UHMWPE), improved Young's modulus of 3400 MPa, tensile strength of 140 MPa, and impact resistance of 22.0 kJ/m2. According to fracture surface analysis, the formation of skin‐intermediate‐core structures accounts for significantly improved impact resistance. At constant RB40 content both morphology and mechanical properties strongly depend upon processing temperature. Upon increasing processing temperature from 165 °C to 250 °C the average shish‐kebab diameter increases from the nanometer to micron range, paralleled by massive loss of self‐reinforcement above 200 °C. The absence of shish‐kebab structure at 250 °C is attributed to relaxation of polymer chains and stretch‐coil transition impairing shish formation.  相似文献   

16.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE)/nano silicon carbide (nano‐SiC) composites were prepared by compression molding. The effects of a coupling agent and the content of the filler on the filler dispersion and the mechanical and thermal properties of the composites were investigated. The results show that the mechanical properties of the composites first increased and then decreased with increasing SiC content. The macromolecular coupling agent exhibited a much better reinforcing effect than the small‐molecule coupling agent. The tensile strength of the composites with 3‐aminopropyltriethoxysilane (KH550), γ‐methacryloxypropyltrimethoxysilane (KH570), and silicone powders reached its maximum value when the silicon carbide (SiC) content was 3%. We found that a web of the UHMWPE/SiC/coupling agent was formed and played a significant role in improving the heat resistance of the composites. In addition, appropriate amounts of SiC could increase the crystallinity of UHMWPE via a process of heterogeneous nucleation. The comprehensive performance of the KH550/silicone/SiC/UHMWPE composites was the best. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Melt-mixed and injection molded binary blends of high density polyethylene (HDPE)/ultra high molecular weight polyethylene (UHMWPE) were evaluated for their structural, thermal, rheological, morphological and mechanical attributes. X-ray diffraction (XRD) study has revealed the absence of any significant changes in the crystalline alignment/morphology of the two polyethylene components. Differential scanning calorimetry (DSC) studies revealed the increase in melting temperature, whereas the properties such as crystallization temperature and percentage crystallinity remained broadly unaffected. Dynamic rheological behavior revealed a transition from liquid like behavior (G′?<?G″) to solid like behavior (G′?>?G″) in the composition range of 20–30 wt% of UHMWPE. Scanning electron microscopy (SEM) of the cryo-fractured surface depicts two phase morphology along with very strong interface. The blending of UHMWPE with HDPE matrix has caused improvement in tensile, impact and flexural properties, whereas strain at break suffered a decrease. The analysis of tensile fractured surface morphology by SEM has proved to be useful in qualitatively understanding the underlying failure mechanisms. Eventually, a viscous-to-elastic transition in the rheological behavior has been observed and found to have a correspondence with structural, mechanical and morphological response in the similar composition window.  相似文献   

18.
In this work, phase separation in carbon nanofiber (CNF) composites with a blend of ultrahigh molecular weight polyethylene (UHMWPE)/high‐density polyethylene (HDPE) was revealed, and its effects on tribological properties were investigated. Results from morphological analysis by optical and scanning electron microscopy indicated two distinct microstructures: a dispersed UHMWPE phase and a continuous microstructure containing HDPE and CNFs. The addition of CNFs into the UHMWPE/HDPE blend induced a decreased steady‐state torque indicative of a decreased dissolution and improved processability. Because CNFs predominantly resided into the HDPE phase, neat HDPE, a HDPE/CNF composite, and neat UHMWPE samples were also prepared for comparison. Wear results, determined by a pin‐on‐disk apparatus, showed that both initial run‐in and steady‐state wear rates of the UHMWPE/HDPE/CNF nanocomposites were reduced with an increasing concentration of CNFs. The wear resistance of the UHMWPE/HDPE blend was more strongly influenced than neat HDPE by the addition of CNFs, which may have been affected by a reduced dissolution and improved interfacial interaction between the two phases. Results from this study suggested that HDPE may not be appropriate for processing UHMWPE composites, as CNFs reside in the HDPE phase, and HDPE diminishes the wear resistance of the material. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
This study was aimed at examining the size effect of charcoal particles on the properties of bamboo charcoal (BC)/ultra‐high molecular weight polyethylene (UHMWPE) composites. Four types of BC with various particle sizes were mixed with UHMWPE using a twin‐screw extruder. It was found that the melting temperature and crystallinity of the composites were slightly decreased with the addition of BC. The incorporation of BC remarkably improved the tensile properties and creep resistance of UHMWPE, and the particle size of BC strongly affected the properties of BC/UHMWPE composites. The BC with lowest particle size exhibited best reinforcement, where the tensile strength and Young's modulus were increased by 385% and 517% compared with neat UHMWPE. The composites with 70 wt % BC possessed conductivities of 16.8, 14.1, 13.5, and 10.9 S/m. The storage modulus and glass transition temperature of the composites also increased with the addition of BC. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45530.  相似文献   

20.
采用化学气相沉积制备了聚吡咯/超高相对分子质量聚乙烯(PPy/UHMWPE)纤维,测试了不同氧化剂浓度、不同沉积时间和温度下PPy/UHMWPE纤维的表面剪切强度,用扫描电镜、动态热机械分析仪、傅立叶变换红外光谱仪分析了PPy/UHMWPE纤维的表面形态、热机械性能和复合材料官能团的变化。结果表明:PPy均匀分布在UHMWPE纤维表面,UHMWPE纤维与PPy之间无化学键作用而是分子间作用力;随着氧化剂三氯化铁浓度的增加和吡咯沉积时间的延长,PPy/UHMWPE纤维表面剪切强度先增大后减小;随着处理温度的升高,PPy/UHMWPE纤维表面剪切强度先增大,当处理温度超过85℃时,其剪切强度则减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号