首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

2.
壳聚糖固定化木聚糖酶的研究   总被引:6,自引:1,他引:5  
朱启忠 《生物技术》1999,9(5):15-18
从青霉菌m8提取出木聚糖酶,将其固定在用戊二醛交联的壳聚糖载体上。1.0g壳聚糖与4%的二醛结合固定3.5mg蛋白,酶活回收率为46.6%。在酶的最适pH为4.6,固定化酶为pH3.8。原酶的最适温度为55℃,固定化酶在60-75℃都具有较高活性。固定化酶的耐热性优于原酶,固定化酶的表现Km值略低于原酶,前者为5.0×10-2g/L,后者为3.58×10-2g/L。  相似文献   

3.
海藻酸钠包埋法制备固定化菠萝蛋白酶   总被引:1,自引:0,他引:1  
以海藻酸钠为载体,包埋法固定菠萝蛋白酶,对固定化奈件进行优化,同时探讨固定化菠萝蛋白酶的部分酶学性能。结果表明:固定化菠萝蛋白酶的质量受海藻酸钠质量分数、固定化酶量、固定化时间以及CaCl2质量分数的影响,其最佳固定化条件为:海藻酸钠质量分数1.0%,CaCl2质量分数3%,固定化酶液量与海藻酸钠体积之比1:2,固定化时间60min,在此条件下,制备的固定化菠萝蛋白酶的比活力为211.8U/g(湿质量载体),由此制得的固定化酶的最适pH为7.6,与游离酶相比,升高了0.8个pH单位,同时显示固定化菠萝蛋白酶能耐受较高的碱性环境,固定化酶最适温度与游离酶相同,均为50℃,固定化酶在较高温度范围内,仍能保持较高的相对活力。  相似文献   

4.
固定化枯草杆菌生物吸附去除水中Cd的研究   总被引:11,自引:0,他引:11  
采用明胶、琼脂、海藻酸钠作为载体对枯草杆菌进行固定,通过对三种载体的包埋效果、传质性能及操作难易的比较来选择适宜的固定化载体,比较固定化微生物与游离微生物及固定化载体海藻酸钠处理含镉废水的效果,并研究温度、pH值等环境因子对固定化枯草杆菌处理含镉废水效果的影响。结果表明:海藻酸钠作为固定化载体其传质性能强、方法简便,机械强度好;固定化枯草杆菌对含镉废水去除效果明显高于游离枯草杆菌。且随着废水中Cd浓度的变化,固定化枯草杆菌处理效果存在差异,在Cd浓度为1.0mg.L^-1 ~20mg.L^-1时,Cd的去除率在24h呈现3次曲线回归,而48h以4次多项式拟合;pH值对固定化枯草杆菌处理效果产生一定影响,在pH5.0-pH7.0,随pH值升高去除效率下降,温度在20℃-30℃,固定化枯草杆菌均有较好的处理效果。  相似文献   

5.
固定化微环境对酿酒酵母代谢的影响   总被引:4,自引:1,他引:3  
本文报道不同载体固定化酵母的某些代谢行为和细胞形态。观察到以海藻酸钙凝胶固定酵母,其发酵液总挥发酸量、乙酸量分别比自然细胞减少25.8%和50.O%,而丁二酸量高出自然细胞36.5%。以海藻酸钙,聚乙烯醇凝胶固定酵母,其氨基氮的利用率比自然细胞分别提高31.1%和34.1%,在固定化前后、酵母菌对各种a-氨基酸的利用速度亦都发生明显的变化。电镜观察,酿酒酵母的细胞膜内陷、形成“凹池”。  相似文献   

6.
壳聚糖固定化谷胱甘肽硫转移酶的研究   总被引:2,自引:0,他引:2  
尹登科  丁虹  喻昕 《生物技术》2004,14(6):17-19
目的:利用壳聚糖固定日本血吸虫谷胱甘肽硫转移酶,并对固定化酶性质及体外催化活性进行研究。方法:利用大肠杆菌BL21(DE3)表达日本血吸虫谷胱甘肽硫转移酶,并从中粗提谷胱甘肽硫转移酶,将其固定在用戊二醛交联的壳聚糖载体上,对游离酶和固定酶的最适pH、温度,游离酶和固定化酶对底物1-氯-2,4-二硝基苯(CDNB)和谷胱甘肽(GSH)的亲和力,温度的稳定性进行了研究。结果:固定化酶活回收率可达41.6%,最适pH6.5~7.0,最适温度37℃,对底物(CDNB和GSH)的亲和力略有下降,对温度稳定性大大提高。在体外固定化酶有很好的催化解毒作用。  相似文献   

7.
双醛淀粉柔性固定木瓜蛋白酶研究   总被引:13,自引:0,他引:13  
提出“柔性固定化酶”的模型,即:用一亲水、柔性高分子链接枝于载体表面制得柔性固定化载体,再用其以共价键合的方式进行酶的柔性固定化。其特点是:柔性固定可改善因直接固定化及手臂固定化使酶失活的缺陷,并提高固定化酶的自由度;如选用粒径单分散微球可改善固定化反应及固定化酶催化反应的均一性。以双醛淀粉(DAS)为柔性链对羧基化聚苯乙烯载体进行柔性化修饰后,固定木瓜蛋白酶,其活力回收率可达50%.相当于用戊二醛进行手臂固定化的活力回收率的2倍。  相似文献   

8.
由于抗DNA抗体免疫化学的发展,使人们对固定化DNA技术发生很大兴趣。这是因为固定化DNA可作为抗DNA抗体的免疫吸附剂去治疗一些与免疫复合物有关的疾病,例如红斑狼疮、类风湿性关节炎等,而这些疾病靠传统治疗方法疗效不佳。以免疫吸附剂治疗免疫性疾病是Terman在1979年首次试用成功。吸附剂一般是用DNA和二价金属离子或有机阳离子进行络合,生成不溶于水的络合物,该络合物对一些致病的抗体及抗原抗体的复合物有吸附作用。因而以二价阳离子络合并沉淀固定DNA的反应引起了人们的兴趣。 Schultz提出,以激光光散射方法可以快  相似文献   

9.
报道了用以环氧乙烷为活性基的多孔颗粒状载体(Eupergit-C)制备固定由巨大芽孢杆菌(B.megaterium)产生的青霉素酰化酶的研究。用已二胺,赖氨酸对载体进行化学修饰后制备固定化酶,获得了较好的固定结果。用未修饰的载体制备固化酶,经24h固定反应,酶活力达176.5IU/g(wet),酶活力总叫率达53.7%,酶蛋白的固定量为19=7mg/g(dr),酶蛋白的固定效率达87.5%。游离酶的酶浓度对制备固定化酶的活力无显影响。当加酶量从312IU/g(dry)上升到6250IU/g(dry)时,固定化酶活力从89IU/g(wet)上升到475IU/g(wet),总收率和固定化效率分别从99%和99%下降到26.5%和32.5%,酶蛋白的固定量从6.9mg/g(dry)上升到112mg/g(dry),酶蛋白的固定效率从99%下降至80.5%。以酶活力为155IU/g(wet),酶蛋白固定量为22mg/g(dry)的固定化酶水解青霉素G钾盐,经过20批循环水解后,剩余酶活力为92.5%。  相似文献   

10.
海藻酸钠固定化β-葡萄糖苷酶的研究   总被引:4,自引:1,他引:3  
以海藻酸钠为载体,研究了β-葡萄糖苷酶固定方法及其条件,并利用固定化β-葡萄糖苷酶进行了酶解试验。结果表明,采用交联-包埋方式,在海藻酸钠质量分数3.5%、给酶量100U/g载体、戊二醛体积分数1%、氯化钙质量分数2%的条件下固定β-葡萄糖苷酶2h,可以获得较佳的固定化效果。其固定率达到65%,重复分批利用20次仍能保持90%以上的酶解得率。利用固定化β-葡萄糖苷酶连续酶解纤维二糖时,在不同进料速度下有着不同的催化效率,当进料速度为1.5mL/min、1.0mL/min时,酶解得率分别达到96,7%和99.0%;与木霉纤维素酶协同水解纤维素时,在β-葡萄糖苷酶总酶活与滤纸酶活之比为0.5(FPA为2.0U/mL)的条件下,酶解滤纸纤维素和微晶纤维素60h的得率比单独采用木霉纤维素酶分别增加了20.4%和29.3%。研究结果对于解决酶法水解纤维资源得率低、酶使用成本高这一关键问题提供了一种有效的方法。  相似文献   

11.
以金属框架结构材料MOF-199为载体对漆酶进行固定化,并对固定化酶的性质进行初步研究。首先,以3-氨基丙基三乙氧基硅烷对载体MOF-199进行表面氨基化修饰,再用戊二醛对载体进行活化,最后对漆酶进行固定化。固定化条件优化结果表明:在漆酶质量浓度0.3 g/L,戊二醛用量1%(体积分数),pH 4.8下固定7 h,制得固定化酶活性最高。对固定化酶的研究发现:最适反应温度为40℃,最适pH为5.2,在连续操作7次后,固定化酶的活力仍能保持在51%。固定化漆酶热稳定性,pH耐受性,贮存稳定性均明显高于游离漆酶。  相似文献   

12.
A novel reagentless immunosensor was fabricated by immobilization of redox mediator 3,3',5,5'-tetramethylbenzidine (TMB) on the Nafion (Nf) film modified glassy carbon electrode. Gold nanoparticles were assembled onto the TMB/Nafion film modified electrode to provide active sites for the immobilization of antibody molecules. The antibody (anti-MIgG), in the present study, was fixed on the electrode for the rapid detection of antigen molecules (MIgG as a model analyte). The results showed that the immunosensor based on the immobilized TMB redox mediator exhibited good electrochemical response. A good linear relationship between peak current and the concentration of the MIgG was obtained in the concentration range from 4 to 120ng/mL. The detection limit was estimated to be 1ng/ml. Under the optimized conditions, the immunosensor exhibits good sensitivity, reproducibility and stability.  相似文献   

13.
The performance of immunosensors is highly dependent on the amount of immobilized antibodies and their remaining antigen binding capacity. In this work, a method for immobilization of antibodies on a two-dimensional carboxyl surface has been optimized using quartz crystal microbalance biosensors. We show that successful immobilization is highly dependent on surface pKa, antibody pI, and pH of immobilization buffer. By the use of EDC/sulfo-NHS (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysulfosuccinimide) activation reagents, the effect of the intrinsic surface pKa is avoided and immobilization at very low pH is therefore possible, and this is important for immobilization of acidic proteins. Antigen binding capacity as a function of immobilization pH was studied. In most cases, the antigen binding capacity followed the immobilization response. However, the antigen-to-antibody binding ratio differed between the antibodies investigated, and for one of the antibodies the antigen binding capacity was significantly lower than expected from immobilization in a certain pH range. Tests with anti-Fc and anti-Fab2 antibodies on different antibody surfaces indicated that the orientation of the antibodies on the surface had a profound effect on the antigen binding capacity of the immobilized antibodies.  相似文献   

14.
This work reports on a complementary use of surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) technologies to study interactions between a peptide antigen and polyclonal antibodies, in an experimental format suitable for diagnostic assays of autoimmune diseases. In the chosen model, a synthetic peptide from the juxtamembrane region of IA-2 (a type 1 diabetes associated antigen) was immobilized by an optimized chemical protocol applicable to both BIACORE and QCM-D sensors. A thorough study of the peptide immobilization was performed to optimize the signal-to-noise ratio using mixed self-assembled monolayers (SAM) on a gold surface. Introduction of polyethylene glycol (EG6) chains into mixed SAM layers and addition of an anionic surfactant to the human serum reduced non-specific binding without modifying the viscoelasticity properties of the layer. Under our conditions, the antibody SPR detection limit was determined to be 0.2 nM in diluted human serum. This value is in agreement with the reported rank distribution of IA-2 antibodies in diabetic patient sera. Label-free and real-time technologies such as SPR and/or QCM-D could be precious tools in future diagnostic assays.  相似文献   

15.
曹文娟  袁海生 《菌物学报》2016,35(3):343-354
采用壳聚糖交联法和海藻酸钠-壳聚糖包埋交联法固定化桦褶孔菌产生的漆酶,探讨最佳固定化条件,固定化漆酶的温度,pH稳定性及操作稳定性,并以两种固定化酶分别对4种染料进行了降解.结果表明:(1)壳聚糖交联法固定化漆酶的最佳条件为:壳聚糖2.5%,戊二醛7%,交联时间2h,固定化时间5h,给酶量1g壳聚糖小球:1mL酶液(1U/mL),固定化效率56%;(2)海藻酸钠-壳聚糖包埋交联法固定化漆酶的最佳条件为:海藻酸钠浓度4%,壳聚糖浓度0.7%,氯化钙浓度5%,戊二醛浓度0.6%,给酶量4mL 4%海藻酸钠:1mL酶液(1U/mL),固定化效率高达86%;(3)固定化的漆酶相比游离漆酶有更好的温度和pH稳定性;(4)比较两种固定化漆酶,海藻酸钠-壳聚糖包埋交联法固定化酶的温度及酸度稳定性要优于壳聚糖固定化酶,但可重复操作性要弱于后者,两者重复使用8次后的剩余酶活比率分别为71%及64%;(5)两种固定化酶对所选的4种不同结构的合成染料均有较好的降解效果,其中壳聚糖固定化酶对茜素红的降解效果及重复使用性极佳,重复降解40mg/L的茜素红10次,降解率仍保持在100%.  相似文献   

16.
Various activated supports (cyanogen bromide, glutaraldehyde, epoxy-chelates, primary amino) were evaluated for the immobilization of IgG anti-horseradish peroxidase. Cyanogen bromide and glutaraldehyde supports greatly reduced the recognition capacity of the antigen, probably due to the incorrect orientation of the antibody on the support. Hetero-functional epoxy-chelate and immobilization by the sugar chain on primary amino groups had little effect on high recognition of the antigen (near to the theoretically expected value). However, the immobilization by the sugar chain resulted in a higher adsorption rate of horseradish peroxidase, possibly due to a favourable orientation on a flexible spacer arm). Antibodies immobilized on aminated surfaces showed two major drawbacks. Firstly, the biological activity of the immobilized antibody sharply decreased over several days when stored at low ionic strength, although this effect could be partially reversed by incubation at high ionic strength. Secondly, a high level of non-specific proteins adsorption on the support surface was observed. Both problems could be successfully resolved by controlling the coating of the support with aldehyde-aspartic-dextran. We propose that the loss of biological activity was related to the ionic adsorption of the immobilized antibody on the support surface, leading to a blocking of the recognition areas. This optimized protocol was applied to the immobilization of IgG anti-horseradish peroxidase from rabbit on magnetic nano-particles. A 10 microg preparation of nano-particles was able to capture more than 75% of the 0.1 microgram of recombinant horseradish peroxidase present in 10 L of crude protein extract (1g/L) from Escherichia coli.  相似文献   

17.
Shen G  Lu J  Cai C 《Analytical biochemistry》2011,418(2):167-171
In this article, we report a method of antibody immobilization carried out by hybridizing DNA–antibody conjugates on a mixed self-assembled monolayer composed of DNA thiols and mercaptopropionic acid via sequence-specific hybridization. The proposed method was applied to fabricate an immunosensor for detecting human immunoglobulin G (IgG). Under the optimized experimental conditions, a wide linear range from 50.0 to 500 μg/ml was reached with a detection limit of 30.13 μg/ml. The developed immunosensor possesses advantages such as simple fabrication, wide linear range, easy regeneration, and excellent reproducibility.  相似文献   

18.
Methods for immobilization of anti-immunoglobulins on insoluble supports were optimized, and the interaction of immunoadsorbents obtained with [125I]-labeled rabbit IgG was investigated. It was shown that this interaction can be adequately described by a rather simple equilibrium model which reflects the interaction of a monovalent antigen with two independent types of binding sites. Within the framework of this model the association constants as well as the concentrations of high affinity binding sites which influence the capacity and efficiency of the separation system were determined. Optimization of the immobilization methods implicated a study on the role of certain functional groups of the antibody involved in the formation of covalent bonds, on the effect of the spacer arm length on the properties of immobilized antibody as well as on the role of the degree of immobilization. It was found that immunoadsorbents obtained after antibody immobilization via lysine or tyrosine residues on matrices with a specific spacer group are the optimal ones.  相似文献   

19.
Enzymatic transesterification of triglycerides in a continuous way is always a great challenge with a large field of applications for biodiesel, bio-lubricant, bio-surfactant, etc. productions. The lipase B from Candida antarctica (CalB) is the most appreciated enzyme because of its high activity and its non-regio-selectivity toward positions of fatty acid residues on glycerol backbone of triglycerides. Nevertheless, in the field of heterogeneous catalysis, we demonstrated that the medium hydrophilic nature of the support used for its commercial form (Lewatit VPOC1600) is a limitation. Glycerol is adsorbed onto support inducing drastic decrease in enzyme activity. Glycerol would form a hydrophilic layer around the enzyme resulting in diffusional limitations during triglyceride transfer to the enzyme. Accurel MP, a very hydrophobic macroporous polymer of propylene, was found not to adsorb glycerol. Immobilization conditions using this support were optimized. The best support was Accurel MP1001 (particle size<1000 μm) and a pre-treatment of the support with acetone instead of ethanol enables the adsorption rate and the immobilized enzyme quantity to be maximized. An economical approach (maximization of the process net present value) was expanded in order to explore the impact of immobilization on development of an industrial packed bed reactor. The crucial ratio between the quantity of lipase and the quantity of support, taking into account enzyme, support and equipped packed bed reactor costs was optimized in this sense. The biocatalyst cost was found as largely the main cost centre (2-10 times higher than the investments for the reactor vessel). In consequence, optimal conditions for immobilization were a compromise between this immobilization yield (90% of lipase immobilized), biocatalyst activity, reactor volume and total investments.  相似文献   

20.
Laccase is a ligninolytic enzyme that is widespread in white-rot fungi. Alginate–chitosan microcapsules prepared by an emulsification–internal gelation technique were used to immobilize laccase. Parameters of the immobilization process were optimized. Under the optimal immobilization conditions (2% sodium alginate, 2% CaCl2, 0.3% chitosan and 1:8 ratio by volume of enzyme to alginate), the loading efficiency and immobilized yield of immobilized laccase were 88.12% and 46.93%, respectively. Laccase stability was increased after immobilization. Both the free and immobilized laccase alone showed a very low decolorization efficiency when Alizarin Red was selected for dye decolorization test. When 0.1 mM 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was added into the decolorization system, the decolorization efficiency increased significantly. Immobilized laccase retained 35.73% activity after three reaction cycles. The result demonstrated that immobilized laccase has potential application in dyestuff treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号