首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
级配对堆石料颗粒破碎及力学特性的影响   总被引:1,自引:0,他引:1  
级配是影响堆石料颗粒破碎和力学特性的重要因素。为研究级配对堆石料强度和变形特性的影响,开展了3种堆石料的大型三轴排水剪切试验;同时为分析不同级配堆石料的颗粒破碎特性,对试验前后试样进行了颗分试验。试验结果表明,颗粒破碎率随应力的增大而增大,在同一围压情况下,相比于细颗粒含量高的堆石料,细颗粒含量少的产生的颗粒破碎率要大。随细颗粒含量的增加,强度指标变大,抵御变形能力增强,剪切过程中产生的体积变形小,剪胀更为明显。  相似文献   

2.
流变过程中堆石颗粒不断破碎,分形维数在流变过程中随时间发生变化。基于流变过程基本规律,将分形理论应用于堆石料流变过程,构造了两类随时间变化的流变过程分形维数,并建立了颗粒破碎率与分形维数的关系。通过分析过程流变试验颗粒破碎率的变化规律,验证了流变过程中双曲线型分形维数假定的合理性。在此基础上,考虑流变过程中的能量关系并结合颗粒破碎耗能的相关研究,进一步推导了堆石料流变过程中体变随时间的变化规律,从而建立堆石料特定荷载情况下的流变本构模型。与试验结果对比表明:该模型可以从分形的角度反映堆石料流变规律。  相似文献   

3.
堆石料的颗粒破碎是影响其强度及变形的主要因素,但堆石料在受力过程中的颗粒破碎规律仍不明确,缺乏准确判断堆石料颗粒破碎的标准。单粒压缩试验是研究堆石料破碎特性的重要手段,通过可视化单粒压缩试验对920组不同粒径玄武岩堆石料颗粒的破碎过程进行了研究。试验结果表明:玄武岩堆石料单粒压缩破碎的过程大致可分为4个阶段,破碎模式可分为3种类型,破碎程度随粒径的减小而增大;同一粒组的堆石料单粒强度较好地服从 Weibull模型,随着试验样本量的增加,峰值应力分布逐步趋向正态分布;破碎颗粒的级配分布与破碎模式相关,多应力峰值破碎颗粒的碎后粒径级配曲线服从分形分布。  相似文献   

4.
通过大型三轴剪切试验,研究了广泛应用于众多工程领域的堆石料,在不同围压下和复杂应力状态下的强度和应力一应变关系,得到了所选用堆石料的抗剪强度指标及邓肯张非线性模型的参数值;通过对比不同围压下,试验前后试样的颗粒级配,得到了在试验过程中,堆石料的颗粒破碎度随着囤压的增加而增加,但制样过程中人为导致颗粒破碎的因数也不容忽视.  相似文献   

5.
为研究不同围压下筑坝堆石料强度及变形特性,利用室内大型三轴压缩试验机进行试验,分析不同围压下筑坝堆石料应力-应变特性、非线性抗剪强度指标及剪胀性的变化规律,探讨Rowe剪胀方程对筑坝堆石料剪胀变形特性的适用性,并揭示其变形破坏机理。试验结果表明:中低围压下,筑坝堆石料应力-应变曲线呈软化趋势,而高围压下则呈硬化特征。非线性抗剪强度指标随围压的增大而逐渐降低。筑坝堆石料在低围压下先发生剪缩后发生剪胀,中高围压下则发生剪缩,且围压越大,剪缩特征越明显。Rowe剪胀方程可适用于表征筑坝堆石料的剪胀变形特性。高围压下引起的颗粒破碎现象是影响筑坝堆石料变形破坏的重要因素,颗粒破碎率越大,剪胀率越小。  相似文献   

6.
考虑级配效应的堆石料颗粒破碎与变形特性研究   总被引:3,自引:0,他引:3  
通过6组级配堆石料的相对密度试验和大型三轴试验,分析了堆石料级配与抗剪强度、剪胀性、压缩性及颗粒破碎之间的规律,建立了堆石料广义塑性模型参数与制样分形维数之间的函数关系式,并利用不同级配的三轴试验结果验证其合理性。结果表明:堆石料的性质与级配密切相关,采用制样分形维数的二次函数可以较好地反映级配对其物理力学性质的影响。研究结论可为考虑级配影响的堆石体应力变形计算提供依据。  相似文献   

7.
大量的压缩试验结果表明,堆石料试样的压缩特性和颗粒破碎特性存在明显的缩尺效应,但系统研究缩尺方法、试样最大粒径、试样直径等对颗粒破碎特性的影响较少。采用侧限压缩试验开展灰岩堆石料的尺寸效应研究,分析了缩尺方法、试样直径和试样最大粒径对压缩特性和颗粒破碎特性的影响规律。结果表明:压缩系数随着试样中粗颗粒含量的上升呈先降低后增大的趋势,压缩系数与试样最大粒径呈正相关,与试样直径呈负相关;引入相对颗粒破碎率评价指标,建立了缩尺方法与相对颗粒破碎率之间的幂函数关系,相对颗粒破碎率随试样直径和试样最大粒径的发展规律可拟合为曲面方程。研究成果可为进一步构建考虑缩尺效应的弹塑性本构模型提供理论基础。  相似文献   

8.
通过堆石料室内大型三轴试验、数值模拟及现场原级配料载荷试验,分析缩尺效应对堆石料工程特性的影响。结果表明:室内试验颗粒最大粒径小于原级配颗粒最大粒径,忽略了颗粒破碎对筑坝料变形的影响,导致室内试验得到的参数大于堆石料实际变形参数;数值模拟试样级配变化较大,堆石料较为均匀,制样孔隙比大,试样干密度也远小于施工控制的干密度,试验时加载过程中颗粒的压缩和压密加剧了筑坝料的变形,导致模拟得到的变形参数偏小。堆石料缩尺效应主要受母岩强度、颗粒形状、级配特征、制样方法、控制标准等的影响;随堆石料最大粒径的增大,初始摩擦角稍有增加,摩擦角衰减值明显增加,体变模量明显减小,模量系数变化相对较小。  相似文献   

9.
以双江口堆石坝主堆石料设计级配为原型,利用单向压缩仪,考虑不同缩尺方法和颗粒最大粒径,对某不同级配粗粒料进行了固定竖向荷载下的湿化变形试验研究。分析试验结果,讨论了不同缩尺方法对粗粒料试验结果的影响,探讨了在单向压缩试验条件下粗粒料的湿化变形规律。发现湿化后试样变形随压力增加呈线性增长,其弹性模量Et较干态粗粒料小。同时还讨论了颗粒破碎的影响因素,粒径越大越易发生破碎,破碎率和粗粒料的级配有关。  相似文献   

10.
砂砾石料是土石坝等工程的主要建筑材料,高应力状态下砂砾石料的颗粒破碎效应加剧,会显著影响其强度及变形特性,甚至威胁工程安全。以前坪水库筑坝砂砾石料为例,开展了不同围压、不同相对密度下三轴固结排水试验,分析了砂砾石达到临界状态之后的颗粒破碎规律与强度变形特性。研究表明,砂砾石料的级配在三轴试验前后都能用分形维数较好地描述,且分形维数与围压之间存在显著的线性关系,而与相对密度基本无关。这说明,围压是影响砂砾石料颗粒破碎程度的主要因素,相对密度的影响则可忽略。砂砾石料临界状态偏应力与围压正相关,而与相对密度无关。体积变形则受围压和相对密度的共同影响,围压越小、相对密度越大则体变的剪胀性越显著,反之则剪胀性越弱甚至无剪胀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号