共查询到19条相似文献,搜索用时 73 毫秒
1.
BP算法在神经网络中应用较为广泛,但有收敛速度慢、易于陷入局部极小点的缺点。蚁群算法是一种新型的模拟进化算法。具有正反馈、分布式计算、全局收敛、启发式学习等特点。本文将蚁群算法和神经网络结合,应用于电路故障诊断中,有效提高了诊断效率。 相似文献
2.
由于传感器节点常散布于野外恶劣环境中而经常出现各类故障,导致网络瘫痪和严重损失,提出了一种基于粗糙集和蚁群优化神经网络的传感器节点故障诊断新方法;首先进行数据采集和预处理,然后利用粗糙集结果断点法对原始故障诊断样本离散化,使用可辨识矩阵实现属性约简,删除冗余信息,得到具有最小条件属性并能覆盖原始数据特征的学习样本集,最后,使用蚁群优化神经网络结构和各参数,并通过对网络进行训练来实现故障诊断;仿真实验表明,在达到同样的训练误差10-3,文中方法所需要的迭代次数仅为880次,而蚁群神经网络为1500次,证明了文中方法具有较高的诊断精度和效率。 相似文献
3.
基于神经网络的故障诊断应用研究 总被引:4,自引:0,他引:4
文中根据神经网络的相关原理,运用神经网络领域的相关知识,对于工业生产中经常出现的设备故障,提出了一种基于RBF神经网络的诊断方法,并详细讨论了RBF神经网络的结构、训练算法及用于设备故障诊断的步骤,最后以某系统的故障诊断为例,证明了此方法的优越性。 相似文献
4.
本文基于模拟电路故障现象和故障原因均比较复杂,故障的定位较困难的现状,提出了一种新的基于蚁群算法的故障诊断知识获取算法.并将该方法应用于一模拟电路的故障诊断过程,仿真结果显示,在故障树中采用该新方法可行、有效. 相似文献
5.
基于和声搜索和蚁群算法优化后的BP神经网络,提出一种风电机组齿轮箱故障诊断方法。将蚁群算法的信息素更新机制用于和声搜索算法中,提高和声搜索算法的收敛速度,并利用和声搜索算法的个体扰动策略和随机搜索机制改善蚁群算法过早收敛的问题。利用该方法对BP神经网络的权值和阈值进行优化,克服BP神经网络算法易陷入局部最优解的缺点,提高神经网络的训练效率和收敛速度。测试结果表明,该方法诊断结果正确且精度高,将经和声蚁群耦合算法优化后的BP神经网络用于风电机组齿轮箱故障诊断是有效的。 相似文献
6.
文中根据神经网络的相关原理,运用神经网络领域的相关知识,对于工业生产中经常出现的设备故障,提出了一种基于RBF神经网络的诊断方法,并详细讨论了RBF神经网络的结构、训练算法及用于设备故障诊断的步骤,最后以某系统的故障诊断为例,证明了此方法的优越性. 相似文献
7.
齿轮传动工况的复杂性使得其特征参量与故障形式呈非线性映射关系.提出基于Levenberg-Marquardt算法的前向多层神经网络的齿轮故障诊断方法,该方法通过利用二阶导数信息,可以提高收敛速度和增强网络的泛化性能.并以一种齿轮箱故障信号采集实验系统为例,通过MATLAB软件及其神经网络工具建模和仿真研究.结果表明,Levenberg-Marquardt神经网络对齿轮常见故障有良好的识别能力,能稳定、准确地识别各类故障,与标准BP网络相比,收敛速度快且诊断更为准确. 相似文献
8.
9.
针对常规方法无法获得最优PID控制器参数的缺点,提出一种基于蚁群神经网络的PID控制器参数优化方法(ACO-RBFNN)。ACO-RBFNN将PID控制器的3个参数作为RBF神经网络的输入,系统输出为RBF神经网络期望输出,通过蚁群算法对RBF神经网络的参数进行优化,并通过RBF神经网络构造参数自学习的PID控制器,从而实现PID控制器参数在线优化。仿真实验结果表明,基于ACO-RBFNN的PID控制器可以得到令人满意的控制效果,可以应用于工业自动化控制系统的PID控制器参数优化。 相似文献
10.
为了克服现有的WSN节点故障诊断方法所具有的难以实现在线诊断和诊断精度仍然不够高的缺点,设计了一种基于Sarsa算法和改进蚁群算法的WSN节点在线故障诊断方法;首先,建立了监测区域的网络模型和WSN节点故障诊断模型,然后,采用主成分分析法对节点故障样本数据进行降维,从而提高诊断效率,将样本数据作为层次,将故障诊断类作为各层节点建立层次树,采用改进的Sarsa算法求取各层节点的Q值,并将其用于初始化蚁群算法中路径的信息素,最后,提出了一种改进的蚁群算法求取从第一层出发的蚁群到各层节点之间的路径,将各层中信息素最大的节点作为最终的故障诊断类别;在Matlab环境下进行仿真实验,结果证明文中方法能有效实现WSN节点故障诊断,且与其它方法相比,具有故障诊断精确度高且能在线故障的优点,是一种有效的节点故障诊断方法. 相似文献
11.
基于神经网络的复杂电子装备故障诊断系统的仿真研究 总被引:16,自引:4,他引:12
该文针对复杂电子装备故障诊断难的特点,以一种典型设备的主要几种故障主例,设计了一种新型神经网络模型,并对系统进行了仿真,讨论了以此模型为基础进行诊断的可能性和正确性,实践表明了该模型的有效性和合理性,与传统方法相比,提高了故障诊断的准确度,而且充分运用了工作经验、专家知识,具有很大的工程应用价值。 相似文献
12.
13.
14.
基于遗传算法与BP神经网络的故障诊断模型 总被引:12,自引:0,他引:12
为了克服单独应用BP算法时存在的缺陷,利用遗传算法(GA)对其进行了改进,建立了基于遗传算法与BP神经网络相结合的诊断模型,此外在二进制编码方法的基础上,讨论了十进制的编码方法与实现以及网络模型参数取值与学习次数间的相互影响等关键问题。 相似文献
15.
16.
系统故障诊断的一种神经网络方法 总被引:4,自引:0,他引:4
该文首先提出一个通用故障示例模型,然后运用一种自适应神经网络学习算法来寻找差错属性与故障类型之间的对应关系,由此对故障进行诊断。因为网络的结构事先并不确定,而是在训练的同时进行同步构造,所以确保了训练后建立网络具有较好的适应性。 相似文献
17.
18.
研究导航传感器故障诊断问题,由于飞行器导航传感器所处环境十分复杂,导航系统由多种部件组成,故障存在许多随机性、模糊性和不确定性因素,难以建立确定数学模型。传统线性模型故障诊断准确率低。为了提高飞行器导航传感器故障诊断准确率,提出一种神经网络的导航传感器故障诊断方法。飞行器导航传感器发生故障时信号中会产生突变成分,利用小波包对原始故障信号进行分解,提取信号特征向量,然后将特征向量输入神经网络训练,实现飞行器导航传感器故障智能化诊断。在Matlab平台实现传感器故障诊断的仿真,结果表明,神经网络提高了飞行器导航传感器故障诊断的准确率,是一种在线、行之有效的导航传感器故障方法。 相似文献
19.
基于神经网络的智能故障诊断技术 总被引:10,自引:2,他引:10
张荣沂 《自动化技术与应用》2003,22(2):15-17,37
归纳了神经网络在故障诊断中的运用方式,探讨了故障诊断的神经网络方法和专家系统方法的联系和区别,以及两种方法的结合方法;最后,给出了选择智能故障诊断方法的原则。 相似文献