首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
一种基于液晶性质的Pt配合物磷光材料电致发光器件   总被引:1,自引:0,他引:1  
采用聚合物掺杂的方式,利用旋涂工艺制备了ITO/PVK:TOPPt/BCP(20 nm)/Mg:Ag(200 nm)结构的有机电致发光器件(OLED)。对掺杂浓度为2%(器件A)和4%(器件B)的磷光聚合物掺杂体系的光致发光(PL)和电致发光(EL)性质进行了分析研究,并对主体材料PVK到磷光客体材料TOPPPt的能量传递机制进行了讨论。实验表明,器件的EL谱谱峰位于625 nm,器件A在25 V时最大亮度为3037 cd/m2,最大电流效率为3.15cd/A。器件的EL谱不会随着偏置电压和掺杂浓度而改变,器件具有较好的稳定性。  相似文献   

2.
其它材料     
N2000-06487 0009089电子情报通信学会技术研究报告:有机电子学OME99-12~22(信学技报,Vol.99,No.79)〔汇,日〕/日本电子情报通信学会.—1999.05.—64P.(L)本文集为有机材料专辑,收录的11篇论文主要涉及:丙烯化合物的淀积与有机发光器件,有机 EL 用材料与 EL 器件,聚合物/金属结构器件等的电气传导特  相似文献   

3.
具有多层薄膜结构,发射鲜蓝色光的有机电致发光(EL)器件已经制成并为选择蓝色发光材料制定了二个经验性指南。要获到具有高 EL 效率的 EL 器件,关键是发射层要有优异的成膜能力以及发射极与载流子输运材料的适当组合,避免形成激态复合物。在我们的有机电致发光器件中,有一个器件在电流密度为100mA/cm~2,直流驱动电压为10V 时,蓝光发射亮度达700cd/m~2。  相似文献   

4.
掺杂型异质结有机电致发光二极管及其稳定性   总被引:9,自引:4,他引:5  
研制了高效率、高稳定性的聚合物/有机物异质结掺杂型电致发光二极管(LED),它以新型聚合物三苯基二胺衍生物(PTPD)为空穴传输材料,高效荧光材料红荧稀(Rubrene)为掺杂剂,异质结基本结构为PTPD/Alq3。双层掺杂时,器件电致发光(EL)的量子效率为1.47%,大约是未掺杂异质结器件0.74%的2倍;与未掺杂器件和常用的TPD/Alq3二极管相比,掺杂器件的稳定性有了显著的提高。讨论了异质结掺杂型LED稳定性改善机理。  相似文献   

5.
为了提高有机电致发光器件的效率和稳定性,制作了聚合物/有机小分子异质结掺杂型电致发光二极管.它以新型PTPD(聚TPD)为空穴传输材料,高效荧光材料Rubrene为掺杂剂.异质结基本结构为PTPD/Alq3,双层掺杂时,器件电致发光的量子效率大约是未掺杂器件的两倍;与未掺杂器件和常用的TPD/Alq3二极管相比,掺杂器件的稳定性有了显著的提高.从电致发光光谱可知,掺杂器件的发射机制为载流子陷阱和Forster能量转换过程的共同作用.  相似文献   

6.
有机无机复合膜发光器件的研究   总被引:1,自引:0,他引:1  
胡学骏  谭海曙 《光电子.激光》2005,16(8):918-921,929
针对聚合物电致发光(EL)材料缺乏可用的电子型聚合物半导体材料的现状,采用无机电子型半导体材料ZnO:Zn与空穴型聚合物材料poly(2,5bis(dodecyloxy)-phenylenevinylene)(PDDOPV)成功制备了结构为ITO/PDDOPV/ZnO:Zn/Al的有机/无机复合膜双层器件。复合膜器件的发光效率与亮度比单层器件提高了1个数量级以上,而复合膜的电流是单层器件的0.5倍。而且,聚合物/无机物复合膜器件的发光颜色随电压的增加而蓝移,其光致发光(PL)光谱也随激发波长的改变而改变,有可能形成了新的发光基团。  相似文献   

7.
聂海  张波  唐先忠  李元勋 《半导体学报》2005,26(9):1778-1782
为了提高有机电致发光器件的效率和稳定性,制作了聚合物/有机小分子异质结掺杂型电致发光二极管.它以新型PTPD(聚TPD)为空穴传输材料,高效荧光材料Rubrene为掺杂剂. 异质结基本结构为PTPD/Alq3,双层掺杂时,器件电致发光的量子效率大约是未掺杂器件的两倍;与未掺杂器件和常用的TPD/Alq3二极管相比,掺杂器件的稳定性有了显著的提高. 从电致发光光谱可知,掺杂器件的发射机制为载流子陷阱和Frster能量转换过程的共同作用.  相似文献   

8.
研究了一种新型的芴与咔唑交替共聚合物材料的电致发光(EL)特性,制备了2种不同结构的器件,分别为indium-tin-oxide(ITO)/polymer/tris-(8-hydroxyquinoline)-alumium(Alq3)/Mg:Ag和ITO/polymer/bathocuproine(BCP)/Alq3/Mg:Ag.实验结果表明;前者发射绿色光,为Alq3的本征发光,聚合物起空穴传输层(HTL)的作用;后者发射蓝色光,EL谱与聚合物材料的光致发光(PL)谱一致,说明这种共聚物除了可用做空穴传输材料外,本身亦可做为优良的OLED蓝色发光材料.  相似文献   

9.
CdSe/PVK纳米晶薄膜及其电致发光特性   总被引:1,自引:0,他引:1  
以巯基乙酸(RSH)为稳定剂,在水溶液中合成CdSe纳米晶,用表面活性剂将分散在水溶液中的纳米颗粒转移到有机溶剂中,与具有电荷输运性能的有机聚合材料复合。作为电致发光(EL)器件的工作层,得到较强的位于600nm附近的CdSe纳米晶的带边发射,以及较弱的位于420nm附近的来自聚合物的发射。器件EL强度首先随着外加电压的增加而增加,当电压超过26V时,EL强度开始下降。器件的电流-电压(I-V)特性基本符合二极管特性,表明器件是受载流子注入限制的。  相似文献   

10.
有机EL器件的研究及产品开发现状   总被引:7,自引:6,他引:1  
介绍了有机EL器件的结构、工作原理及特点.概述了有机EL器件的研究现状及产品开发现状,对器件今后的发展做了展望。  相似文献   

11.
Electrical characteristics of top-gate field-effect transistors based on a wide range of solution-processed organic semiconductors are systematically investigated. The top-gate field-effect transistors based on different organic semiconductors—from an amorphous polymer semiconductor to a polycrystalline molecular semiconductor—exhibit higher operational stability compared with bottom-gate organic field-effect transistors reported in literature, in spite of significant difference in field-effect mobility. The correlation between charge transport and operational stability is discussed to gain insight into high operational stability of top-gate organic field-effect transistors.  相似文献   

12.
This work focuses on the effect of light exposure on ITO/organic interface in organic optoelectronic devices, including organic light emitting devices (OLEDs), organic photo-detectors (OPDs) and organic solar cells (OSCs). The results show that irradiation by light in the visible and UV range leads to a gradual deterioration in charge injection and extraction across the interface. A correlation between the performance stability of the devices and the photo-stability of the ITO/organic contacts is established. Studies also show that this photo-induced degradation can be significantly reduced by means of ITO surface treatment or through the insertion of interfacial layers between ITO and the organic layers. X-ray Photoelectron Spectroscopy (XPS) measurements reveal detectable changes in the interface characteristics after irradiation, indicating that the photo-degradation of the ITO/organic contacts is chemical in nature. Changes in XPS characteristics after irradiation suggest a possible reduction in bonds between ITO and its adjacent organic layer. The results shed light on a new material degradation mechanism that appears to have a wide presence in ITO/organic contacts in general, and which may play a key role in limiting the stability of various organic optoelectronic devices such as OLEDs, OSCs and OPDs.  相似文献   

13.
The bias-stress stability of low-voltage organic p-channel and n-channel thin-film transistors (TFTs) based on five promising organic semiconductors and fabricated on flexible polyethylene naphthalate (PEN) substrates has been investigated. In particular, it has been studied to which extent the bias-stress-induced decay of the on-state drain current of the TFTs is affected by the choice of the semiconductor and by the gate-source and drain-source voltages applied during bias stress. It has been found that for at least some of the organic p-channel TFTs investigated in this study, the bias-stress stability is comparable to that of a-Si:H and metal-oxide TFTs, despite the fact that the organic TFTs were fabricated at significantly lower process temperatures, which is important in view of the fabrication of these devices on plastic substrates.  相似文献   

14.
In this progress report, recent advances in the development of organic transistors with superior bias stress stability and in the understanding of the charge traps that degrade device performance under prolonged bias stress are reviewed, with a particular focus on materials science and engineering methods. The phenomenological aspects of bias stress effects and the experimental methods for investigating charge traps are described. The recent progress in the bias stress stability of organic transistors is discussed in terms of those components that are the main focus of attempts to improve bias stress stability, i.e., organic semiconductor layers, gate dielectrics, and source/drain contacts. A brief summary of this progress is presented and the outlook for future research in this field is assessed. This report aims to summarize recent progress in this field and to provide some guidelines for studying bias stress–induced charge‐trapping phenomena.  相似文献   

15.
Environmental stability is one of the most important parameters for high-performance organic field-effect transistors (OFETs). Hydrophobic insulators usually possess much better air stability than some conventional inorganic and hydrophilic organic insulators. However, fabrication of devices with high integration by photolithography method cannot be directly performed on hydrophobic insulators due to their photoresist-unwettable properties. In this work, a simple yet efficient metal-assisted photolithography method is developed to achieve large-scale fabrication of highly integrated organic electronic devices on photoresist-unwettable insulators. By using copper (Cu) as sacrificial layer, photolithography can be performed on these insulators with nearly the same resolution, uniformity, and reproducibility as the conventional photolithography. This method shows excellent flexibility and is capable of fabricating high-integrated devices on a variety of hydrophobic insulators including hydrophobic amorphous fluoropolymer (CYTOP), poly(dimethylsiloxane) (PDMS), and octadecyltrichlorosilane (OTS)-modified SiO2. OFETs based on 6,13-dichloropentacene (DCP) microwires (MWs) with CYTOP as the insulator layer were fabricated, which exhibited excellent device performance. Much improved device stability with very low mobility degradation (less than 9%) was observed after 24 days. While devices fabricated on hydrophilic insulators of poly-(vinyl phenol) (PVP) and bare SiO2 experienced dramatic performances decay within 24 days. Furthermore, by using metal-assisted photolithography method, flexible OFETs arrays could be further fabricated on polyethylene naphthalate (PEN) substrate, which showed excellent mechanical bending flexibility and stability. This work unveils the great potential of metal-assisted photolithography method for long-term stable high-integration organic electronic devices.  相似文献   

16.
The major challenge in organic electronics concerns the stability of organic semiconductor materials which affects the operational lifetime of devices. Recent reports have shown that hydrogen‐bonded pigments of the indigoid family are air‐ and moisture resistant. The magenta pigment quinacridone, a hydrogen‐bonded molecule in the solid state with a pentacene like frame, is a perfect example for extraordinary chemical stability. Here, studies using in situ spectroscopic methods comparing quinacridone and pentacene are presented. A different spectral response of their radical cations is observed upon chemical doping. While in pentacene the barrier between doping and irreversible overoxidation is small, this stability toward overoxidation is increased by the heteroatomic structure, leading to hydrogen‐bonded quinacridone. This work provides insight into molecular design principles that may lead to next‐generation organic semiconductors with enhanced stability and performance.  相似文献   

17.
N-type organic thin film transistors (OTFT) containing modified gold electrodes have been fabricated to investigate the influence of the self assembled monolayer on the transistor characteristics. We report on the effect of drain/source modification by thiol derivatives on the performances, electrical parameters uniformity and electrical stability of C60 transistors. In the literature, electrical instability is often attributed to organic semiconductor (OSC), OSC-insulator interface and insulator. We found here that OSC-metal interfaces affect dramatically the operational stability for bottom gate/bottom contact structure. These effects have been attributed to morphological evolution at the interface metal-OSC induced by the self-assembled monolayers.  相似文献   

18.
The organic/electrode interfaces in organic solar cells are systematically studied for their light, heat, and electrical stability in an inert atmosphere. Various extraction layers are examined for their effect on device stability, including poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and MoO3 for hole extraction layers, as well as LiF, Cs2CO3, and lithium acetylacetonate (Liacac) for electron extraction layers. The organic/metal interface is shown to be inherently photo‐unstable, resulting in significant losses in device efficiency with irradiation. X‐ray photoelectron spectroscopy measurements of the organic/aluminum interface suggest that the photo‐induced changes are chemical in nature. In general, interfacial layers are shown to substantially reduce photo‐degradation of the active layer/electrode interface. In spite of their photo‐stability, several interfacial layers present at the active layer/cathode interface suffer from thermal degradation effects due to temperature increases under exposure to light. Electrical aging effects are proven to be negligible in comparison to other major modes of degradation.  相似文献   

19.
Polymethine laser dyes which fluoresce in the near infrared in organic solvents generally exhibit poor temporal stability at room temperature. Two typical laser-pumped polymethine dyes in aqueous solutions containing nonionic surfactants are investigated. Temporal stability was improved 20-fold, as compared to organic solutions, with no significant changes in laser-pumping threshold or tuning range.  相似文献   

20.
《Microelectronics Reliability》2014,54(12):2801-2812
This paper analyzes SRAM cell designs based on organic and inorganic thin film transistors (TFTs). The performance in terms of static noise margin (SNM), read stability and write ability for all-p organic (Pentacene–Pentacene), organic complementary (Pentacene–C60) and hybrid complementary (Pentacene–ZnO) configurations of SRAM cell is evaluated using benchmarked industry standard Atlas 2-D numerical device simulator. Moreover, the cell behaviour is analyzed at different cell and pull-up ratios. The electrical characteristics and performance parameters of individual TFT used in SRAM cell is verified with reported experimental results. Furthermore, the analytical result for SNM of all-p organic SRAM cell is validated with respect to the simulated result. Besides this, the cell and pull-up ratios of the hybrid and organic SRAM cells are optimized for achieving best performance of read and write operations and thereafter, the results are verified analytically also. The SNM of hybrid cell is almost two times higher than the all-p SRAM, whereas this improvement is just 18% in comparison to the organic memory cell. On the other hand, the organic complementary SRAM cell shows an improvement of 26% and 22% for the read stability in comparison to the all-p organic and hybrid SRAM cells, respectively. Contrastingly, this organic cell demonstrates a reduction of 16% in the SNM and an increment of 76% in write access time in comparison to the hybrid cell. To achieve an overall improved performance, the organic complementary SRAM cell is designed such that the access transistors are pentacene based p-type instead of often used n-type transistor. Favorably, this organic SRAM design shows reasonably lower write access time in comparison to the cell with n-type access OTFTs. Moreover, this cell shows adequate SNM and read stability that too at substantially lower width of p-type access OTFTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号