首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Gas hydrates-the firm crystal connections formed water (water, ice, water vapor) and low-molecu- lar waterproof natural gases (mainly methane) whose crystal structure effectively compresses gas: each cubic meter of hydrate can yield over 160 m^3 of methane. In present time exploitation of the Messoyahsk (Russia) and Mallik (Canada) deposits of gas hydrates in is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments in round extent depends on improvement of geophysical and well test research, among which native-state core drilling is one of the major. Sampling nativestate core from gas hydrates sediments keeping not only original composition, but structural-textural features of their construction. Despite of appeal of use gas hydrates as the perspective and ecologically pure fuel possessing huge resources, investigation and development of their deposits can lead to a number of the negative consequences connected with arising hazards for maintenance of their technical and ecological safety of carrying out. Scales of arising problems can change from local up to regional and even global.  相似文献   

2.
Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities.In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and climate changes,here we summarize the research results of pockmarks in the spatio-temporal distributions and shaping factors.Most of pockmarks occur along active or passive continental margins during the last 25 kyr B.P..Circular and ellipse are the most common forms of pockmarks,whereas pockmarks in a special crescent or elongated shape are indicators of slope instabilities,and ring-shape pockmarks are endemic to the gas hydrate zones.Further researches should be focused on the trigger mechanism of climate changes based on the pockmarks in the high latitudes formed during the deglaciation periods,and the role of gas hydrates in the seafloor evolution should be elucidated.In addition,the feature of pockmarks at their early stage(e.g.,developing gas chimneys and gas driving sedimentary doming)and the relations between pockmarks and mass movements,mud diapirs could be further studied to clarify the influences of rapid methane release from submarine sediments on the atmospheric carbon contents.  相似文献   

3.
钻井实践表明,钻井液侵入会改变井壁围岩特性,例如岩石强度、孔隙压力等。在非常规的含水合物地层,钻井液侵入还可能诱发地层中水合物分解和再形成,从而对井壁稳定和测井解释产生影响。因此,研究钻井液在含水合物地层中侵入流动特性有非常重要的理论和实际应用价值。基于野外水合物储层的相关数据和室内实验模拟系统,采用数值模拟方法研究了实验尺度下钻井液在含水合物地层中的侵入流动规律及其对储层物性的影响。模拟结果可为后续实验模拟方案设计以及热开采研究提供一定的指导作用。   相似文献   

4.
海底泥底辟(泥火山)与周缘发育的天然气水合物存在着密切的关联,表现在静态要素和动态成藏2个方面。作为一种重要而有效的运移通道类型,泥底辟(泥火山)携带的气体将是天然气水合物的重要气体来源。同时,含气流体沿着泥底辟(泥火山)的上侵,可能会导致上覆地层中温压场和地球化学组分的改变,进而引起天然气水合物稳定带厚度的变化。因此,泥底辟(泥火山)将控制天然气水合物的成藏,如位于构造中心部位的矿物低温热液成藏模式和位于构造边缘的矿物交代成藏模式。另一方面,泥底辟(泥火山)的不同演化阶段将对天然气水合物的形成和富集产生不同的影响。早期阶段,泥底辟(泥火山)形成的运移通道可能并未延伸到天然气水合物稳定带,导致气源供给不够充分;中期阶段,天然气水合物成藏条件匹配良好,利于天然气水合物的生成;晚期阶段,泥火山喷发带来的高热量含气流体引起天然气水合物稳定带的热异常,可能导致天然气水合物的分解,直至泥火山活动平静期,天然气水合物再次成藏。   相似文献   

5.
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043–1.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes of thermogenic gas. A geological model governing fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes of thermogenic gas eventually contribute to the formation of the gas hydrates.  相似文献   

6.
The complex distribution of gas hydrate in sediments makes understanding the mechanical properties of hydrate-bearing sediments a challenging task. The mechanical behaviors of hydrate-bearing interlayered sediments are still poorly known. A series of triaxial shearing tests were conducted to investigate the strength parameters and deformation properties of methane hydrate-bearing interlayered sediments at the effective pressure of 1 MPa. The results indicate that the stress-strain curves of hydrate-bearing interlayered sediments are significantly different from that of hydrate-bearing sediments. The peak strength, Young's modulus, initial yielding modulus, and failure mode are deeply affected by the methane hydrate distribution. The failure behaviors and mechanism of strain softening and hardening patterns of the interlayered specimens are more complicated than those of the integrated specimens. This study compares the different mechanical behaviors between integrated and interlayered specimens containing gas hydrate, which can serve as a reference for the prediction and analysis of the deformation behaviors of natural gas hydrate reservoirs.  相似文献   

7.
Submarine landslides have been observed in the Baiyun Depression of the South China Sea. The occurrence of hydrates below these landslides indicates that these slope instabilities may be closely related to the massive release of methane. In this study, we used a simple Monte-Carlo model to determine the first-order deformation pattern of a gravitationally destabilizing slope. The results show that a stress concentration occurs due to hydrate dissociation on the nearby glide surface and on top of a gas chimney structure. Upon the dissolution of the gas hydrate, slope failure occurs due to the excess pore pressure generated by the dissociation of the gas hydrates. When gas hydrates dissociate at shallow depths, the excess pore pressure generated can be greater than the total stress acting at those points, along with the forces that resist sliding. Initially, the failure occurs at the toe of the slope, then extends to the interior. Although our investigation focused only on the contribution of hydrate decomposition to submarine landslide, this process is also affected by both the slope material properties and topography.  相似文献   

8.
Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area.  相似文献   

9.
Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea, such as bottom simulating reflections(BSRs), undersea gas springs, pyrite associated with methane leakage, mud diapirs/mud volcanos, bottom-water methane anomalies and so on. In this study, six key stratigraphic interfaces including T_0(seafloor), T_1(LGM, 23 kyr B.P.), T_2(2.58 Myr), T_3(5.33 Myr), T_4(11.02 Myr) and T_5(16.12 Myr) were identified, and then five third-order sequences of SQIII1 to SQIII5 were divided. However, T5 in southern continental slope is not found, which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene, earlier than the southern segment. Four system tracts including lowstand systems tract(LST), transgressive systems tract(TST), highstand systems tract(HST) and falling stage systems tract(FSST) are further divided. The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P. indicate two large-scale sea level drop events in the research area. Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas, littoral fluvial-delta plains, incised channels or submarine canyons, slope fans, submarine fans or coastal sandbars, littoral-neritic finegrained sediments, mud volcanos and some other geological bodies respectively. The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m, and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m. The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections. The re-depositional turbidite sand bodies, such as canyon channels, slope fans and submarine fans developed in Quaternary strata, are the predominant hydrate reservoirs. According to developing process, the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage, sediments destabilizing and methane leakage stage, and channel filling and hydrate re-occurrence stage.  相似文献   

10.
The sedimentary facies of the subaqueous Changjiang(Yangtze) River delta since the late Pleistocene was studied based on lithology and foraminifera analysis for two boreholes,CJK07 and CJK11,along with14C dating.Four sedimentary facies were identified,namely fluvial,tidal flat,offshore,and prodelta facies.The fluvial sedimentary facies is comprised of fluvial channel lag deposits,fluvial point bar deposits,and floodplain deposits,showing a fining-upward sequence in general with no benthic foraminifera.A layer of stiff clay overlies the fluvial deposits in core CJK07,indicating a long-term exposure environment during the Last Glacial Maximum(LGM).During the postglacial sea-level rise around 13-7.5 cal ka BP,the tidal flat facies was deposited in core CJK11,characterized by abundant silt-clay couplets.Euryhaline species dominate the subtidal flat foraminiferal assemblages,while almost no foraminifera was found in the intertidal flat.The offshore environment was the major sedimentary environment when the sea level reached its highest level around 7.5 cal ka BP,with a maximum accumulation rate of 10 mm/a found in core CJK11.Prodelta sediments have been deposited in core CJK11 since ~3 cal ka BP,after the formation of the Changjiang River delta.The difference in sedimentary facies between core CJK07 and CJK11 is due to their location: core CJK07 was in an interfluve while core CJK11 was in an incised valley during the LGM.Furthermore,AMS14C dating of core CJK07 shows poor chronological order,indicating that the sediments were reworked by strong tidal currents and that sediment deposited since ~7.7 cal ka BP in core CJK07 was eroded away by modern hydrodynamic forces caused by the southward shift of the Changjiang River delta depocenter.  相似文献   

11.
The distribution of Oil & gas fields shows their close relationship with the most active tectonic regions. This is not a coincidence but having a scientific reasons. The crustal active regions, refer to the places where the active natural earthquake, volcanic activities, underground water happened, and the areas of the leaking off of natural gas to the surface of the crust. The magma of volcanic activities brings the organic "kitchen range body" hydrocarbon- generating model and inorganic genetic hydrocarbon to the regions covered by volcanic rock. Underground water brings a catalytic hydrocarbongenerating model for organic matter, and the leaking- off of H2 and CO2 contributes a synthetic hydrocarbon - generating model. Volcanic activities bring the assemblage of Source, Reservoir and Seal formed by the sediments and magma the sedimentary basins, and the hydrocarbon - generating system with a "water - volcano" binary structure is formed. All these conditions are favorable and excellent for the formation of oil & gas fields. The distribution of American oil & gas fields have very close relationship with the mines of Fe, Mn, Ct, Mo, W and V, deposits of Zn, Cu, V, Pb, Al and Hg, and the deposits of fluorite, sulfur, potassium salt, phosphate and halite, and the distribution of sulfate- chloride of river water. The reason why few oil & gas fields discovered in the regions covered by volcanic rock in western America maybe because of the view of "inconsistency between petroleum and volcano". Further more, It's very difficult to carry out a geophysical exploration in such kinds of regions.This paper examined a few hydrocarbon-generating models (systems) mentioned above and came up with some fresh ideas on the exploration in the areas covered with volcanic rocks.  相似文献   

12.
INTRODUCTIONChrbondioxideandInehanearethetwomostabundantabosphericcarbonspedes.Methane'sconcenhati0nintheboposphereinonsesO.7-l.l%peryearraasmussenandKhaili,l98l,BlakeandRowand,l988,Scheeetal.,l989).Ihauseofmethne'sforpaCtontheearth'sclirnateandthechernistryoftheatInosphere,thebudgetofabosphericmethanehasmivedconsiderableattchti0n.Wetlandsareestirnataltobeoneofthelamptsoimofabosphericmethane,aocountingforab0ut4O%to5O%0ftheglobalInehanesoonannually(Cforneand0reInland,l988,WhitingandC…  相似文献   

13.
Jin  Jiapeng  Wang  Xiujuan  He  Min  Li  Jie  Yan  Chengzhi  Li  Yuanping  Zhou  Jilin  Qian  Jin 《中国海洋湖沼学报》2020,38(4):1188-1200
New acquired and reprocessed three-dimensional(3 D) seismic data were used to delineate the distribution and characterization of bottom simulating reflections(B SRs) in the Chaoshan Sag,in the eastern part of Dongsha Island,South China Sea.Three submarine canyons with different scales were interpreted from the 3 D seismic data,displaying three stages of canyon development and are related with the variation of BSR.Abundant faults were identified from the coherence and ant-tracing attributions extracted from3 D seismic data,which provide the evidence for fluid migration from deeper sediments to the gas hydrate stability zone(GHSZ).The uplift of Dongsha Island created a large number of faults and leads to the increased seafloor erosion.The erosion caused the cooling of the seafloor sediments and deepening of the base of the gas hydrate stability zone,which is attributed to the presence of paleo-BSR and BSR downward shift in the study area.Hence,methane gas may be released during the BSR resetting and gas hydrate dissociation related with seafloor ero sion.  相似文献   

14.
INTRODUCTIONOneofthemostextensiveshelvesoftheworldlyingwithinthesouthernpartoftheSouthChinaSeaisthe1850000km2SundaShelflocatedbetweenthethreelargeislandsofSumatra,Borneo,JavaandmainlandAsia(LaFond,1966).ThenorthernpartoftheSundaShelfisseparatedfromtheJavaSeas…  相似文献   

15.
A comprehensive study of the data profiles, including the 2D seismic data, single channel seismic data, shallow sections, etc., reveals that gas hydrates occur in the East China Sea. A series of special techniques are used in the processing of seismic data, which include enhancing the accuracy of velocity analysis and resolution, estimating the wavelet, suppressing the multiple, preserving the relative amplitude, using the DMO and AVO techniques and some special techniques in dealing with the wave impedance. The existence of gas hydrates is reflected in the subbottom profiles in the appearance of BSRs, amplitude anomalies, velocity anomalies and AVO anomalies, etc. Hence the gas hydrates can be identified and predicted. It is pointed out that the East China Sea is a favorable area of the gas hydrates resource, and the Okinawa Trough is a target area of gas hydrates reservoir.  相似文献   

16.
The coal deposits methane is one of the type ecological mineral-raw materials resources.The methane reasonable extract from coal-methane deposits at the same time with mining of coal.This is the most economical way of the coal methane mining.The Russian coal basins are a large domestic raw materials base for energy,metallurgical and coke industry.There are the 77% of all mines have volume of gas in Kuzbass,Vorkuta and other mining industrial regions of Russia.Russian coal deposits is disposed the most largest in the world coal deposits and are most methane-bearing capacity coal seams:8.1 kg/t methane of coal,to compare with 7.4 kg/t in Great Britain,6.7 kg/t in China,5.0 kg/t in USA and 3.6 kg/t in Germany.  相似文献   

17.
The article presents the results of many years of studies of the Upper Cretaceous and Paleogene sediments in the territory of West Siberian Plain. The heterogeneous structure of these sediments in different regions of the plain is shown. The lithological and palynological characteristics of a number of studied wells drilled in different years in Omsk and Kulunda Depressions, in Baraba Lowland and Bakchar Basin are given. The obtained palynological data allowed to substantiate the age of the deposits and to make suggestions concerning their depositional environment, and to clarify the subdivision of geological section into formations. The sections of the Upper Cretaceous and Paleogene deposits in different lithofacial regions of the Western Siberia differ from each other in completeness, genesis, and paleontological characteristics. The Upper Cretaceous sediments in Western Siberia are represented by formations of both marine(Pokur, Kuznetzovo, Ipatovo, Slavgorod and Gan'kino Formations) and continental genesis(Lenkovo and Sym formations). The Paleogene sediments, with the exception of Oligocene, mostly have a marine genesis-these are Talitsa-, Marsyat-, Lulinvor-, Tavda-and Yurki formations, but there are also continental sediments(Ostrovnoje Formation). A large stratigraphic break in the Upper Cretaceous and Paleogene boundary deposits, covering a significant part of the Maastrichtian, Paleocene, Ypresian, and Lutetian stages of the Eocene, was established in the sourheast of the West Siberian Plain(Bakchar Basin, Baraba Lowland and Kulunda Depression). The most complete sections are located in the Omsk Depression, where the Upper Cretaceous Gan'kino Formation is covered by Talitsa and Lulinvor Formations of Paleogene age. The most important events occurring at the boundary of the Cretaceous and Paleogene in Western Siberia can be traced currently in a few sections located in the Trans-Ural area, since there was no sedimentation in the rest of the territory at that time.  相似文献   

18.
Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and ~(14)C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1(0–8.08 mbsf) is of the delta sedimentary facies, Unit 2(8.08–12.08 mbsf) is of the neritic shelf facies, Unit 3(12.08–23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4(23.85 mbsf–) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1–23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.  相似文献   

19.
The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.  相似文献   

20.
Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0–15 L min?1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h?1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号